KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 CA103314
NCI NIH HHS - United States
PubMed
31375828
PubMed Central
PMC6923165
DOI
10.1093/mutage/gez021
PII: 5543279
Knihovny.cz E-zdroje
- MeSH
- albuminy farmakologie MeSH
- deoxycytidin analogy a deriváty farmakologie MeSH
- duktální karcinom pankreatu farmakoterapie genetika MeSH
- gemcitabin MeSH
- lidé MeSH
- myši nahé MeSH
- myši MeSH
- nádorové biomarkery genetika MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní farmakoterapie genetika MeSH
- paclitaxel farmakologie MeSH
- přemostěné cyklické sloučeniny farmakologie MeSH
- proliferace buněk účinky léků genetika MeSH
- protokoly antitumorózní kombinované chemoterapie farmakologie MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- signální transdukce účinky léků genetika MeSH
- taxoidy farmakologie MeSH
- transkriptom účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 130-nm albumin-bound paclitaxel MeSH Prohlížeč
- albuminy MeSH
- deoxycytidin MeSH
- gemcitabin MeSH
- KRAS protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- paclitaxel MeSH
- přemostěné cyklické sloučeniny MeSH
- protoonkogenní proteiny p21(ras) MeSH
- taxane MeSH Prohlížeč
- taxoidy MeSH
The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Toxicogenomics National Institute of Public Health Prague Czech Republic
Transplantation Center Institute of Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Siegel R. L., Miller K. D. and Jemal A (2017) Cancer Statistics, 2017. CA. Cancer J. Clin., 67, 7–30. PubMed
Rahib L., Smith B. D., Aizenberg R., Rosenzweig A. B., Fleshman J. M. and Matrisian L. M (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 74, 2913–2921. PubMed
Zemanek T., Melichar B., Lovecek M., Soucek P. and Mohelnikova-Duchonova B (2019) Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics, 20, 113–127. PubMed
Von Hoff D. D., Ramanathan R. K., Borad M. J., et al. (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 29, 4548–4554. PubMed PMC
Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, et al. (2015) nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl. Cancer Inst., 107, 1– 10. PubMed
Spencer C. M. and Faulds D (1994) Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs, 48, 794–847. PubMed
Ojima I., Chen J., Sun L., et al. (2008) Design, synthesis, and biological evaluation of new-generation taxoids. J. Med. Chem., 51, 3203–3221. PubMed PMC
Mohelnikova-Duchonova B., Kocik M., Duchonova B., et al. (2017) Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. Pharmacogenomics J., 17, 452–460. PubMed
Jones S., Zhang X., Parsons D. W., et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. PubMed PMC
COSMIC https://cancer.sanger.ac.uk/cosmic (accessed March 6, 2019).
Bournet B., Buscail C., Muscari F., Cordelier P. and Buscail L (2016) Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur. J. Cancer, 54, 75–83. PubMed
Lemstrova R., Brynychova V., Hughes D. J., et al. (2017) Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome. Oncol. Lett., 14, 5980–5988. PubMed PMC
Knudsen E. S., O’Reilly E. M., Brody J. R. and Witkiewicz A. K (2016) Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology, 150, 48–63. PubMed PMC
Perera D. and Venkitaraman A. R (2016) Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents. Sci. Rep., 6, 29741. PubMed PMC
Moore P. S., Sipos B., Orlandini S., et al. (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch., 439, 798–802. PubMed
Hlavaty J., Petznek H., Holzmüller H., Url A., Jandl G., Berger A., Salmons B., Günzburg W. H. and Renner M (2012) Evaluation of a gene-directed enzyme-product therapy (GDEPT) in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer. PLoS One, 7, e40611. PubMed PMC
Mohelnikova-Duchonova B., Brynychova V., Oliverius M., Honsova E., Kala Z., Muckova K. and Soucek P (2013) Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas, 42, 707–716. PubMed
Soucek P., Anzenbacher P., Skoumalová I. and Dvorák M (2005) Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells, 23, 1417–1422. PubMed
KEGG PATHWAY Database https://www.kegg.jp/kegg/pathway.html (accessed December 31, 2015).
BioCarta https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways (accessed December 31, 2015).
Mohelnikova-Duchonova B., Oliverius M., Honsova E. and Soucek P (2012) Evaluation of reference genes and normalization strategy for quantitative real-time PCR in human pancreatic carcinoma. Dis. Markers, 32, 203–210. PubMed PMC
Bustin S. A., Benes V., Garson J. A., et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55, 611–622. PubMed
Sipos B., Möser S., Kalthoff H., Török V., Löhr M. and Klöppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch., 442, 444–452. PubMed
Mohelnikova-Duchonova B., Brynychova V., Hlavac V., et al. (2013) The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemother. Pharmacol., 72, 669–682. PubMed
Livak K. J. and Schmittgen T. D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. PubMed
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A. and Wishart D. S (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res., 44, W147–W153. PubMed PMC
Khomtchouk B. B., Hennessy J. R. and Wahlestedt C (2017) shinyheatmap: ultra fast low memory heatmap web interface for big data genomics. PLoS One, 12, e0176334. PubMed PMC
Dvorak P., Hlavac V., Mohelnikova-Duchonova B., Liska V., Pesta M. and Soucek P (2017) Downregulation of ABC transporters in non-neoplastic tissues confers better prognosis for pancreatic and colorectal cancer patients. J. Cancer, 8, 1959–1971. PubMed PMC
Benjamini Y. H. Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289–300.
Tao L. Y., Zhang L. F., Xiu D. R., Yuan C. H., Ma Z. L. and Jiang B (2016) Prognostic significance of K-ras mutations in pancreatic cancer: a meta-analysis. World J. Surg. Oncol., 14, 146. PubMed PMC
Haas M., Ormanns S., Baechmann S., et al. (2017) Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br. J. Cancer, 116, 1462–1469. PubMed PMC
Montor W. R., Salas A. R. O. S. E. and Melo F. H. M (2018) Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol. Cancer, 17, 55. PubMed PMC
Lakshman B., Messing S., Schmid E. M., et al. (2019) Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J. Biol. Chem., 294, 2193–2207. PubMed PMC
Oikonomou E., Koustas E., Goulielmaki M. and Pintzas A (2014) BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget, 5, 11752–11777. PubMed PMC
Gnjatic S., Ritter E., Büchler M. W., et al. (2010) Seromic profiling of ovarian and pancreatic cancer. Proc. Natl. Acad. Sci. USA, 107, 5088–5093. PubMed PMC
Bracci P. M., Zhou M., Young S. and Wiemels J (2012) Serum autoantibodies to pancreatic cancer antigens as biomarkers of pancreatic cancer in a San Francisco Bay Area case-control study. Cancer, 118, 5384–5394. PubMed PMC
Oh E. T., Kim C. W., Kim S. J., Lee J. S., Hong S. S. and Park H. J (2016) Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia. Sci. Rep., 6, 27382. PubMed PMC
The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes