KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes

. 2019 Dec 19 ; 34 (5-6) : 403-411.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31375828

Grantová podpora
R01 CA103314 NCI NIH HHS - United States

The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.

Zobrazit více v PubMed

Siegel R. L., Miller K. D. and Jemal A (2017) Cancer Statistics, 2017. CA. Cancer J. Clin., 67, 7–30. PubMed

Rahib L., Smith B. D., Aizenberg R., Rosenzweig A. B., Fleshman J. M. and Matrisian L. M (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 74, 2913–2921. PubMed

Zemanek T., Melichar B., Lovecek M., Soucek P. and Mohelnikova-Duchonova B (2019) Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics, 20, 113–127. PubMed

Von Hoff D. D., Ramanathan R. K., Borad M. J., et al. (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 29, 4548–4554. PubMed PMC

Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, et al. (2015) nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl. Cancer Inst., 107, 1– 10. PubMed

Spencer C. M. and Faulds D (1994) Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs, 48, 794–847. PubMed

Ojima I., Chen J., Sun L., et al. (2008) Design, synthesis, and biological evaluation of new-generation taxoids. J. Med. Chem., 51, 3203–3221. PubMed PMC

Mohelnikova-Duchonova B., Kocik M., Duchonova B., et al. (2017) Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. Pharmacogenomics J., 17, 452–460. PubMed

Jones S., Zhang X., Parsons D. W., et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. PubMed PMC

COSMIC https://cancer.sanger.ac.uk/cosmic (accessed March 6, 2019).

Bournet B., Buscail C., Muscari F., Cordelier P. and Buscail L (2016) Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur. J. Cancer, 54, 75–83. PubMed

Lemstrova R., Brynychova V., Hughes D. J., et al. (2017) Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome. Oncol. Lett., 14, 5980–5988. PubMed PMC

Knudsen E. S., O’Reilly E. M., Brody J. R. and Witkiewicz A. K (2016) Genetic diversity of pancreatic ductal adenocarcinoma and opportunities for precision medicine. Gastroenterology, 150, 48–63. PubMed PMC

Perera D. and Venkitaraman A. R (2016) Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents. Sci. Rep., 6, 29741. PubMed PMC

Moore P. S., Sipos B., Orlandini S., et al. (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch., 439, 798–802. PubMed

Hlavaty J., Petznek H., Holzmüller H., Url A., Jandl G., Berger A., Salmons B., Günzburg W. H. and Renner M (2012) Evaluation of a gene-directed enzyme-product therapy (GDEPT) in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer. PLoS One, 7, e40611. PubMed PMC

Mohelnikova-Duchonova B., Brynychova V., Oliverius M., Honsova E., Kala Z., Muckova K. and Soucek P (2013) Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas, 42, 707–716. PubMed

Soucek P., Anzenbacher P., Skoumalová I. and Dvorák M (2005) Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells, 23, 1417–1422. PubMed

KEGG PATHWAY Database https://www.kegg.jp/kegg/pathway.html (accessed December 31, 2015).

BioCarta https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways (accessed December 31, 2015).

Mohelnikova-Duchonova B., Oliverius M., Honsova E. and Soucek P (2012) Evaluation of reference genes and normalization strategy for quantitative real-time PCR in human pancreatic carcinoma. Dis. Markers, 32, 203–210. PubMed PMC

Bustin S. A., Benes V., Garson J. A., et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55, 611–622. PubMed

Sipos B., Möser S., Kalthoff H., Török V., Löhr M. and Klöppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch., 442, 444–452. PubMed

Mohelnikova-Duchonova B., Brynychova V., Hlavac V., et al. (2013) The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemother. Pharmacol., 72, 669–682. PubMed

Livak K. J. and Schmittgen T. D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. PubMed

Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A. and Wishart D. S (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res., 44, W147–W153. PubMed PMC

Khomtchouk B. B., Hennessy J. R. and Wahlestedt C (2017) shinyheatmap: ultra fast low memory heatmap web interface for big data genomics. PLoS One, 12, e0176334. PubMed PMC

Dvorak P., Hlavac V., Mohelnikova-Duchonova B., Liska V., Pesta M. and Soucek P (2017) Downregulation of ABC transporters in non-neoplastic tissues confers better prognosis for pancreatic and colorectal cancer patients. J. Cancer, 8, 1959–1971. PubMed PMC

Benjamini Y. H. Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289–300.

Tao L. Y., Zhang L. F., Xiu D. R., Yuan C. H., Ma Z. L. and Jiang B (2016) Prognostic significance of K-ras mutations in pancreatic cancer: a meta-analysis. World J. Surg. Oncol., 14, 146. PubMed PMC

Haas M., Ormanns S., Baechmann S., et al. (2017) Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br. J. Cancer, 116, 1462–1469. PubMed PMC

Montor W. R., Salas A. R. O. S. E. and Melo F. H. M (2018) Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol. Cancer, 17, 55. PubMed PMC

Lakshman B., Messing S., Schmid E. M., et al. (2019) Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J. Biol. Chem., 294, 2193–2207. PubMed PMC

Oikonomou E., Koustas E., Goulielmaki M. and Pintzas A (2014) BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget, 5, 11752–11777. PubMed PMC

Gnjatic S., Ritter E., Büchler M. W., et al. (2010) Seromic profiling of ovarian and pancreatic cancer. Proc. Natl. Acad. Sci. USA, 107, 5088–5093. PubMed PMC

Bracci P. M., Zhou M., Young S. and Wiemels J (2012) Serum autoantibodies to pancreatic cancer antigens as biomarkers of pancreatic cancer in a San Francisco Bay Area case-control study. Cancer, 118, 5384–5394. PubMed PMC

Oh E. T., Kim C. W., Kim S. J., Lee J. S., Hong S. S. and Park H. J (2016) Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia. Sci. Rep., 6, 27382. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...