Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29113235
PubMed Central
PMC5661609
DOI
10.3892/ol.2017.6946
PII: OL-0-0-6946
Knihovny.cz E-zdroje
- Klíčová slova
- KRAS, gene expression, mutation, overall survival, pancreatic ductal adenocarcinoma,
- Publikační typ
- časopisecké články MeSH
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a poor prognosis, and no targeted therapy is currently available. The aim of the present study was to investigate the prognostic significance of the expression of V-Ki-ras2 Κirsten rat sarcoma viral oncogene homolog (KRAS), downstream signaling pathway genes and the association with clinical characteristics in PDAC patients undergoing radical surgery. Tumors and adjacent non-neoplastic pancreatic tissues were examined in 45 patients with histologically verified PDAC. KRAS and B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene mutation analysis was performed using the KRAS/BRAF/phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α array. The transcript profile of 52 KRAS downstream signaling pathway genes was assessed using quantitative-polymerase chain reaction. KRAS mutation was detected in 80% of cases. The genes of four signaling pathways downstream of KRAS, including the phosphoinositide 3-kinase/3-phosphoinositide-dependent protein kinase 1/V-akt murine thymoma viral oncogene homolog 1, RAL guanine nucleotide exchange factor, Ras and Rab interactor 1/ABL proto-oncogene-1, non-receptor tyrosine kinase, and RAF proto-oncogene serine/threonine-protein kinase/mitogen-activated protein kinase pathways, exhibited differential expression in PDAC compared with that in the adjacent normal tissues. However, no significant differences in expression were evident between patients with KRAS-mutated and wild-type tumors. The expression of KRAS downstream signaling pathways genes did not correlate with angioinvasion, perineural invasion, grade or presence of lymph node metastasis. Additionally, the presence of KRAS mutations was not associated with overall survival. Among the KRAS downstream effective signaling pathways molecules investigated, only v-raf-1 murine leukemia viral oncogene homolog 1 expression was predictive of prognosis. Overall, KRAS mutation is present in the majority of cases of PDAC, but is not associated with changes in the expression of KRAS downstream signaling pathways and the clinical outcome. This may partly explain the failure of KRAS-targeted therapies in PDAC.
Department of Biology Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Department of Toxicogenomics National Institute of Public Health 100 42 Prague Czech Republic
Zobrazit více v PubMed
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29. doi: 10.3322/caac.21254. PubMed DOI
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–1825. doi: 10.1056/NEJMoa1011923. PubMed DOI
Morris JP, IV, Wang SC, Hebrok M. KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–695. doi: 10.1038/nrc2899. PubMed DOI PMC
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: Weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–774. doi: 10.1038/nrc3106. PubMed DOI PMC
Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111:817–822. doi: 10.1038/bjc.2014.215. PubMed DOI PMC
Eser S, Reiff N, Messer M, Seidler B, Gottschalk K, Dobler M, Hieber M, Arbeiter A, Klein S, Kong B, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–420. doi: 10.1016/j.ccr.2013.01.023. PubMed DOI
Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, Charles RP, Rabinovich BA, Hann B, Dankort D, et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2012;2:685–693. doi: 10.1158/2159-8290.CD-11-0347. PubMed DOI PMC
Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell. 2005;7:533–545. doi: 10.1016/j.ccr.2005.04.030. PubMed DOI
Feldmann G, Mishra A, Hong SM, Bisht S, Strock CJ, Ball DW, Goggins M, Maitra A, Nelkin BD. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res. 2010;70:4460–4469. doi: 10.1158/0008-5472.CAN-09-1107. PubMed DOI PMC
Dhaka A, Costa RM, Hu H, Irvin DK, Patel A, Kornblum HI, Silva AJ, O'Dell TJ, Colicelli J. The RAS effector RIN1 modulates the formation of aversive memories. J Neurosci. 2003;23:748–757. PubMed PMC
Mohelnikova-Duchonova B, Kocik M, Duchonova B, Brynychova V, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Ojima I, et al. Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. Pharmacogenomics J. 2016 Aug 30; (Epub ahead of print) PubMed
Mohelnikova-Duchonova B, Brynychova V, Hlavac V, Kocik M, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Melichar B, Soucek P. The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemother Pharmacol. 2013;72:669–682. doi: 10.1007/s00280-013-2246-2. PubMed DOI
Mohelnikova-Duchonova B, Brynychova V, Oliverius M, Honsova E, Kala Z, Muckova K, Soucek P. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas. 2013;42:707–716. doi: 10.1097/MPA.0b013e318279b861. PubMed DOI
Soucek P, Anzenbacher P, Skoumalova I, Dvorak M. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2005;23:1417–1422. doi: 10.1634/stemcells.2005-0066. PubMed DOI
Mohelnikova-Duchonova B, Oliverius M, Honsova E, Soucek P. Evaluation of reference genes and normalization strategy for quantitative real-time PCR in human pancreatic carcinoma. Dis Markers. 2012;32:203–210. doi: 10.1155/2012/582107. PubMed DOI PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE. Detection of K-ras mutations inthe stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res. 1994;54:3568–3573. PubMed
Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer. 2016;54:75–83. doi: 10.1016/j.ejca.2015.11.012. PubMed DOI
Zhou L, Baba Y, Kitano Y, Miyake K, Zhang X, Yamamura K, Kosumi K, Kaida T, Arima K, Taki K, et al. KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: Pyrosequencing technology and literature review. Med Oncol. 2016;33:32. doi: 10.1007/s12032-016-0745-9. PubMed DOI
Oliveira-Cunha M, Hadfield KD, Siriwardena AK, Newman W. EGFR and KRAS mutational analysis and their correlation to survival in pancreatic and periampullary cancer. Pancreas. 2012;41:428–434. doi: 10.1097/MPA.0b013e3182327a03. PubMed DOI
Schultz NA, Roslind A, Christensen IJ, Horn T, Høgdall E, Pedersen LN, Kruhøffer M, Burcharth F, Wøjdemann M, Johansen JS. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas. 2012;41:759–766. PubMed
Lemstrova R, Melichar B, Mohelnikova-Duchonova B. Therapeutic potential of taxanes in the treatment of metastatic pancreatic cancer. Cancer Chemother Pharmacol. 2016;78:1101–1111. doi: 10.1007/s00280-016-3058-y. PubMed DOI
Melichar B. Laboratory medicine and medical oncology: The tale of two Cinderellas. Clin Chem Lab Med. 2013;51:99–112. doi: 10.1515/cclm-2012-0496. PubMed DOI
Fuchs CS, Azevedo S, Okusaka T, Van Laethem JL, Lipton LR, Riess H, Szczylik C, Moore MJ, Peeters M, Bodoky G. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: The GAMMA trial. Ann Oncol. 2015;26:921–927. doi: 10.1093/annonc/mdv027. PubMed DOI PMC
Deplanque G, Demarchi M, Hebbar M, Flynn P, Melichar B, Atkins J, Nowara E, Moyé L, Piquemal D, Ritter D, et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol. 2015;26:1194–1200. doi: 10.1093/annonc/mdv133. PubMed DOI PMC
Chuang HC, Huang PH, Kulp SK, Chen CS. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer. Pharmacol Res. 2017;117:370–376. doi: 10.1016/j.phrs.2017.01.006. PubMed DOI
Chung V, McDonough S, Philip PA, Cardin D, Wang-Gillam A, Hui L, Tejani MA, Seery TE, Dy IA, Al Baghdadi T, et al. Effect of Selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 2017;3:516–522. doi: 10.1001/jamaoncol.2016.5383. PubMed DOI PMC
Riely GJ, Johnson ML, Medina C, Rizvi NA, Miller VA, Kris MG, Pietanza MC, Azzoli CG, Krug LM, Pao W, Ginsberg MS. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J Thoracic Oncol. 2011;6:1435–1437. doi: 10.1097/JTO.0b013e318223c099. PubMed DOI
Karp JE, Vener TI, Raponi M, Ritchie EK, Smith BD, Gore SD, Morris LE, Feldman EJ, Greer JM, Malek S, et al. Multi-institutional phase 2 clinical and pharmacogenomic trial of tipifarnib plus etoposide for elderly adults with newly diagnosed acute myelogenous leukemia. Blood. 2012;119:55–63. doi: 10.1182/blood-2011-08-370825. PubMed DOI PMC
Rao S, Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kourteva G, Iveson T, Andre T, Dostalova J, et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol. 2004;22:3950–3957. doi: 10.1200/JCO.2004.10.037. PubMed DOI
Van CE, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22:1430–1438. doi: 10.1200/JCO.2004.10.112. PubMed DOI
KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes
Fusobacterium nucleatum tumor DNA levels are associated with survival in colorectal cancer patients