Ex situ determination of freely dissolved concentrations of hydrophobic organic chemicals in sediments and soils: basis for interpreting toxicity and assessing bioavailability, risks and remediation necessity
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
EPA999999
Intramural EPA - United States
PubMed
32313252
PubMed Central
PMC7397929
DOI
10.1038/s41596-020-0311-y
PII: 10.1038/s41596-020-0311-y
Knihovny.cz E-zdroje
- MeSH
- geologické sedimenty analýza MeSH
- hydrofobní a hydrofilní interakce MeSH
- látky znečišťující půdu analýza MeSH
- mikroextrakce na pevné fázi metody MeSH
- půda chemie MeSH
- znečištění životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- půda MeSH
The freely dissolved concentration (Cfree) of hydrophobic organic chemicals in sediments and soils is considered the driver behind chemical bioavailability and, ultimately, toxic effects in benthic organisms. Therefore, quantifying Cfree, although challenging, is critical when assessing risks of contamination in field and spiked sediments and soils (e.g., when judging remediation necessity or interpreting results of toxicity assays performed for chemical safety assessments). Here, we provide a state-of-the-art passive sampling protocol for determining Cfree in sediment and soil samples. It represents an international consensus procedure, developed during a recent interlaboratory comparison study. The protocol describes the selection and preconditioning of the passive sampling polymer, critical incubation system component dimensions, equilibration and equilibrium condition confirmation, quantitative sampler extraction, quality assurance/control issues and final calculations of Cfree. The full procedure requires several weeks (depending on the sampler used) because of prolonged equilibration times. However, hands-on time, excluding chemical analysis, is approximately 3 d for a set of about 15 replicated samples.
Chemistry Department Southern California Coastal Water Research Project Authority Costa Mesa CA USA
Civil Environmental and Construction Engineering Texas Tech University Lubbock TX USA
Geotechnics and Environment Norwegian Geotechnical Institute Oslo Norway
Graduate School of Oceanography University of Rhode Island Narragansett RI USA
Institute for Risk Assessment Sciences Utrecht University Utrecht the Netherlands
Zobrazit více v PubMed
Schwarzenbach RP et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006). PubMed
Dickson KL, Maki AW & Brungs WA Fate and effects of sediment-bound chemicals in aquatic systems. (SETAC Special Publication. Pergamon, New York, USA, 1987).
Di Toro DM et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10, 1541–1583 (1991).
USEPA. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Report No. SW‐846, (Washington, DC, USA, 2015).
Lydy MJ et al. Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr. Environ. Assess. Manag. 10, 167–178 (2014). PubMed PMC
Mayer P et al. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag. 10, 197–209 (2014). PubMed PMC
Greenberg MS et al. Passive sampling methods for contaminated sediments: risk assessment and management. Integr. Environ. Assess. Manag. 10, 224–236 (2014). PubMed PMC
Hawthorne SB et al. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem. 83, 6754–6761 (2011). PubMed
Cornelissen G et al. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic sea. Environ. Sci. Technol. 42, 8733–8739 (2008). PubMed
Jahnke A, Mayer P & McLachlan MS Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in baltic sea sediment. Environ. Sci. Technol. 46, 10114–10122 (2012). PubMed
Parkerton TF & Maruya KA Passive sampling in contaminated sediment assessment: building consensus to improve decision making. Integr. Environ. Assess. Manag. 10, 163–166 (2014). PubMed
Booij K et al. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment. Environ. Sci. Technol. 50, 3–17 (2016). PubMed
Apell JN & Gschwend PM In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data. Environ. Pollut. 218, 95–101 (2016). PubMed
Ghosh U et al. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manag. 10, 210–223 (2014). PubMed PMC
Fernandez LA, Macfarlane JK, Tcaciuc AP & Gschwend PM Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips. Environ. Sci. Technol. 43, 1430–1436 (2009). PubMed
Khairy MA & Lohmann R Using Polyethylene Passive Samplers to Study the Partitioning and Fluxes of Polybrominated Diphenyl Ethers in an Urban River. Environ. Sci. Technol. 51, 9062–9071 (2017). PubMed
Jonker MTO & Koelmans AA Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol. 35, 3742–3748 (2001). PubMed
Gomez-Eyles JL, Jonker MTO, Hodson ME & Collins CD Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions. Environ. Sci. Technol. 46, 962–969 (2012). PubMed
Cornelissen G, Arp HPH, Pettersen A, Hauge A & Breedveld GD Assessing PAH and PCB emissions from the relocation of harbour sediments using equilibrium passive samplers. Chemosphere 72, 1581–1587 (2008). PubMed
Smedes F, Van Vliet LA & Booij K Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ. Sci. Technol. 47, 510–517 (2013). PubMed
Tuikka AI et al. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments. Sci. Total Environ. 563–564, 396–404 (2016). PubMed
Ter Laak TL, Agbo SO, Barendregt A & Hermens JLM Freely dissolved concentrations of PAHs in soil pore water: Measurements via solid-phase extraction and consequences for soil tests. Environ. Sci. Technol. 40, 1307–1313 (2006). PubMed
Maruya KA, Zeng EY, Tsukada D & Bay SM A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Environ. Toxicol. Chem. 28, 733–740 (2009). PubMed
Thomas C, Lampert D & Reible D Remedy performance monitoring at contaminated sediment sites using profiling solid phase microextraction (SPME) polydimethylsiloxane (PDMS) fibers. Environ. Sci. Process. Impacts 16, 445–452 (2014). PubMed
Reichenberg F, Smedes F, Jönsson JA & Mayer P Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem. Cent. J. 2 (2008). PubMed PMC
Golding CJ, Gobas FAPC & Birch GF Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction. Environ. Toxicol. Chem. 26, 829–836 (2007). PubMed
St. George T, Vlahos P, Harner T, Helm P & Wilford B A rapidly equilibrating, thin film, passive water sampler for organic contaminants; Characterization and field testing. Environ. Pollut. 159, 481–486 (2011). PubMed
Jonker MTO et al. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison. Environ. Sci. Technol. 52, 3574–3582 (2018). PubMed PMC
USEPA/SERDP/ESTCP. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual. Report No. EPA/600/R-16/357, (Office of Research and Development, Washington, DC, USA, 2017).
Risticevic S, Lord H, Górecki T, Arthur CL & Pawliszyn J Protocol for solid-phase microextraction method development. Nat. Protoc. 5, 122–139 (2010). PubMed
USEPA. Guidelines for Using Passive Samplers to Monitor Nonionic Organic Contaminants at Superfund Sediment Sites. Sediment Assessment and Monitoring Sheet. Report No. OSWER Directive 9200.1–110 FS, (Office of Superfund Remediation and Technology Innovation/Office of Research and Development, Washington, DC, USA, 2012).
Fernandez LA, Lao W, Maruya KA & Burgess RM Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the palos verdes shelf superfund site using polymeric passive samplers. Environ. Sci. Technol. 48, 3925–3934 (2014). PubMed
Burgess RM et al. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites. Environ. Toxicol. Chem. 34, 1720–1733 (2015). PubMed
Jahnke A, Witt G, Schäfer S, Haase N & Escher BI Combining passive sampling with toxicological characterization of complex mixtures of pollutants from the aquatic environment. Adv. Biochem. Eng. Biotechnol. 157, 225–261 (2017). PubMed
ECHA. Guidance on information requirements and chemical safety assessment. R.7b: Endpoint specific guidance. Version 4.0. 279 (2017).
USEPA. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Report No. EPA 600-R-99–096, (Office of Research and Development, Washington, DC, USA, 2000).
OECD. OECD guidelines for the testing of chemicals. 218: Sediment-water Chironomid toxicity test using spiked sediment. 21 (2004).
OECD. OECD guidelines for the testing of chemicals. 225: Sediment-water Lumbriculus toxicity test using spiked sediment. 31 (2007).
Ortega-Calvo JJ et al. From Bioavailability Science to Regulation of Organic Chemicals. Environ. Sci. Technol. 49, 10255–10264 (2015). PubMed
Carr RS & Nipper M Porewater toxicity testing: Biological, chemical, and ecological considerations. (SETAC Press, Pensacola, FL, USA, 2003).
Zhang H, Davison W, Miller S & Tych W In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim. Cosmochim. Acta 59, 4181–4192 (1995).
Senn DB et al. Equilibrium-based sampler for determining Cu2+ concentrations in aquatic ecosystems. Environ. Sci. Technol. 38, 3381–3386 (2004). PubMed
Dong Z, Lewis CG, Burgess RM & Shine JP The Gellyfish: An in situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems. Environ. Toxicol. Chem. 34, 983–992 (2015). PubMed PMC
Haftka JJH, Hammer J & Hermens JLM Mechanisms of Neutral and Anionic Surfactant Sorption to Solid-Phase Microextraction Fibers. Environ. Sci. Technol. 49, 11053–11061 (2015). PubMed
Haftka JJH, Scherpenisse P, Jonker MTO & Hermens JLM Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon. Environ. Sci. Technol. 47, 4455–4462 (2013). PubMed
Warren JK, Vlahos P, Smith R & Tobias C Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems. Environ. Toxicol. Chem. 37, 1990–1997 (2018). PubMed
Ter Laak TL, Barendregt A & Hermens JLM Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ. Sci. Technol. 40, 2184–2190 (2006). PubMed
USEPA. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Procedures for the Determination of the Freely Dissolved Interstitial Water Concentrations of Nonionic Organics. Report No. EPA-600-R-02–012, (Office of Research and Development, Washington, DC, USA, 2012).
Van der Heijden SA & Jonker MTO PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation. Environ. Sci. Technol. 43, 3757–3763 (2009). PubMed
Giesen D, Jonker MTO & van Gestel CAM Development of QSARs for the toxicity of chlorobenzenes to the soil dwelling springtail Folsomia candida. Environ. Tox. Chem. 31, 1136–1142 (2012). PubMed
Ahn S et al. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon. Environ. Sci. Technol. 39, 6516–6526 (2005). PubMed
Rusina TP, Smedes F, Klanova J, Booij K & Holoubek I Polymer selection for passive sampling: A comparison of critical properties. Chemosphere 68, 1344–1351 (2007). PubMed
Jonker MTO, Sinke AJC, Brils JM & Koelmans AA Sorption of polycyclic aromatic hydrocarbons to oil contaminated sediment: Unresolved complex? Environ. Sci. Technol. 37, 5197–5203 (2003). PubMed
Muijs B & Jonker MT A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms. Environ. Toxicol. Chem. 29, 1943–1949 (2010). PubMed
Muijs B & Jonker MTO Assessing the bioavailability of complex petroleum hydrocarbon mixtures in sediments. Environ. Sci. Technol. 45, 3554–3561 (2011). PubMed
Perron MM, Burgess RM, Suuberg EM, Cantwell MG & Pennell KG Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ. Toxicol. Chem. 32, 2182–2189 (2013). PubMed PMC
Oen AMP et al. In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ. Sci. Technol. 45, 4053–4059 (2011). PubMed
Sanders JP, Andrade NA & Ghosh U Evaluation of passive sampling polymers and nonequilibrium adjustment methods in a multiyear surveillance of sediment porewater PCBs. Environ. Toxicol. Chem. 37, 2487–2495 (2018). PubMed
Nelson DW & Sommers LE Total organic carbon and organic matter. 2nd edn, 539–579 (ASA and SSSA, Madison, USA, 1982).
Karickhoff SW, Brown DS & Scott TA Sorption of hydrophobic pollutants on natural sediments. Water Res. 13, 241–248 (1979).
Endo S, Grathwohl P, Haderlein SB & Schmidt TC LFERs for soil organic carbon - water distribution coefficients (K OC) at environmentally relevant Sorbate concentrations. Environ. Sci. Technol. 43, 3094–3100 (2009). PubMed
Luthy RG et al. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31, 3341–3347 (1997).
Alexander M Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34, 4259–4265 (2000).
Cornelissen G et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39, 6881–6895 (2005). PubMed
Smedes F & Booij K Guidelines for passive sampling of hydrophobic contaminants in water using silicone rubber samplers. Report No. 52, 20 (ICES Techniques in marine environmental sciences, 2012).
Jalalizadeh M & Ghosh U Analysis of Measurement Errors in Passive Sampling of Porewater PCB Concentrations under Static and Periodically Vibrated Conditions. Environ. Sci. Technol. 51, 7018–7027 (2017). PubMed
Joyce AS & Burgess RM Using performance reference compounds to compare mass transfer calibration methodologies in passive samplers deployed in the water column. Environ. Toxicol. Chem. 37, 2089–2097 (2018). PubMed PMC
Lampert DJ, Thomas C & Reible DD Internal and external transport significance for predicting contaminant uptake rates in passive samplers. Chemosphere 119, 910–916 (2015). PubMed
Jonker MTO, Van Der Heijden SA, Kotte M & Smedes F Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol. 49, 6791–6799 (2015). PubMed
Jonker MTO, Van Der Heijden SA, Kreitinger JP & Hawthorne SB Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ. Sci. Technol. 41, 7472–7478 (2007). PubMed
Lambert MK, Friedman C, Luey P & Lohmann R Role of black carbon in the sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans at the diamond alkali superfund site, Newark Bay, New Jersey. Environ. Sci. Technol. 45, 4331–4338 (2011). PubMed
Witt G et al. Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ. Sci. Technol. 47, 7830–7839 (2013). PubMed
Choi Y, Wu Y, Luthy RG & Kang S Non-equilibrium passive sampling of hydrophobic organic contaminants in sediment pore-water: PCB exchange kinetics. J. Hazard. Mater. 318, 579–586 (2016). PubMed
Booij K, Sleiderink HM & Smedes F Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. 17, 1236–1245 (1998).
Choi Y, Cho YM & Luthy RG Polyethylene-water partitioning coefficients for parent- and alkylated-polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ. Sci. Technol. 47, 6943–6950 (2013). PubMed
Reitsma PJ, Adelman D & Lohmann R Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol. 47, 10429–10437 (2013). PubMed
Smedes F, Geertsma RW, Van Der Zande T & Booij K Polymer-water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation. Environ. Sci. Tech. 43, 7047–7054 (2009). PubMed
Smedes F SSP silicone– lipid– and SPMD–water partition coefficients of seventy hydrophobic organic contaminants and evaluation of the water concentration calculator for SPMD. Chemosphere, 748–757 (2019). PubMed
Booij K, Smedes F & Allan IJ Guidelines for determining polymer-water and polymer-polymer partition coefficients of organic compounds. Report No. 61, 32 (ICES. Techniques in Marine Environmental Sciences, 2017).
Fernandez LA, Harvey CF & Gschwend PM Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ. Sci. Technol. 43, 8888–8894 (2009). PubMed
Shen X & Reible D An analytical model for the fate and transport of performance reference compounds and target compounds around cylindrical passive samplers. Chemosphere 232, 489–495 (2019). PubMed
Apell JN & Gschwend PM Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ. Sci. Technol. 48, 10301–10307 (2014). PubMed
Thompson JM, Hsieh CH & Luthy RG Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers. Environ. Sci. Technol. 49, 2270–2277 (2015). PubMed
Tcaciuc AP PRC correction calculator for passive sampling in sediments. Strategic Environmental Research and Development Program andEnvironmental Security Technology Certification Program, <https://www.serdp-estcp.org/Tools-and-Training/Tools/PRC-Correction-Calculator> (2014).
Booij K, Hoedemaker JR & Bakker JF Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ. Sci. Technol. 37, 4213–4220 (2003). PubMed
Rusina TP, Smedes F, Koblizkova M & Klanova J Calibration of silicone rubber passive samplers: Experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol. 44, 362–367 (2010). PubMed
Smedes F Silicone–water partition coefficients determined by cosolvent method for chlorinated pesticides, musks, organo phosphates, phthalates and more. Chemosphere 210, 662–671 (2018). PubMed
Booij K, Smedes F & Van Weerlee EM Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere 46, 1157–1161 (2002). PubMed