Alkaloid Escholidine and Its Interaction with DNA Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34943140
PubMed Central
PMC8698932
DOI
10.3390/biology10121225
PII: biology10121225
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, G-quadruplex, alkaloid, cancer, escholidine, spectroscopy,
- Publikační typ
- časopisecké články MeSH
Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant.
Zobrazit více v PubMed
Rajecky M., Slaninova I., Mokrisova P., Urbanova J., Palkovsky M., Taborska E., Taborsky P. Alkaloid chelirubine and DNA: Blue and red luminescence. Talanta. 2013;105:317–319. doi: 10.1016/j.talanta.2012.10.045. PubMed DOI
Rybakova S., Rajecky M., Urbanova J., Pencikova K., Taborska E., Gargallo R., Taborsky P. Interaction of oligonucleotides with benzo c phenanthridine alkaloid sanguilutine. Chem. Pap. 2013;67:568–572. doi: 10.2478/s11696-013-0340-x. DOI
Sandor R., Slanina J., Midlik A., Sebrlova K., Novotna L., Carnecka M., Slaninova I., Taborsky P., Taborska E., Pes O. Sanguinarine is reduced by NADH through a covalent adduct. Phytochemistry. 2018;145:77–84. doi: 10.1016/j.phytochem.2017.10.010. PubMed DOI
Rajecky M., Sebrlova K., Mravec F., Taborsky P. Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo c phenanthridine Alkaloids. PLoS ONE. 2015;10:e0129925. doi: 10.1371/journal.pone.0129925. PubMed DOI PMC
Leitao da-Cunha E.V., Fechine I.M., Guedes D.N., Barbosa-Filho J.M., Sobral da Silva M. Protoberberine Alkaloids. In: Cordell G.A., editor. The Alkaloids: Chemistry and Biology. Volume 62. Academic Press; Cambridge, MA, USA: 2005. pp. 1–75. PubMed
Grycová L., Dostál J., Marek R. Quarternary Protoberberine Alkaloids. Volume 68. Elsevier; Amsterdam, The Netherlands: 2007. pp. 150–175. PubMed
Dostál J., Slavík J. Novější Poznatky o Sanguinarinu a Příbuzných Alkaloidech. Chemické Listy; Praha, Czech Republic: 2000. pp. 15–20.
Majidzadeh H., Araj-Khodaei M., Ghaffari M., Torbati M., Ezzati Nazhad Dolatabadi J., Hamblin M.R. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf. B Biointerfaces. 2020;194:111188. doi: 10.1016/j.colsurfb.2020.111188. PubMed DOI
Ponnusamy L., Kothandan G., Manoharan R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2020;1866:165897. doi: 10.1016/j.bbadis.2020.165897. PubMed DOI
Ma W., Zhang Y., Yu M., Wang B., Xu S., Zhang J., Li X., Ye X. In-vitro and in-vivo anti-breast cancer activity of synergistic effect of berberine and exercise through promoting the apoptosis and immunomodulatory effects. Int. Immunopharmacol. 2020;87:106787. doi: 10.1016/j.intimp.2020.106787. PubMed DOI
Gu S., Song X., Xie R., Ouyang C., Xie L., Li Q., Su T., Xu M., Xu T., Huang D., et al. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci. 2020;257:118122. doi: 10.1016/j.lfs.2020.118122. PubMed DOI
Chudík S., Marek R., Seckárová P., Necas M., Dostál J., Slavík J. Revision of the structure of escholidine. J. Nat. Prod. 2006;69:954–956. doi: 10.1021/np060078e. PubMed DOI
Slavík J., Dolejš L., Sedmera P. Alkaloids of the Papaveraceae, XLIV. Quaternary alkaloids from roots of three Escholtzia species and from the aerial part of Hunnemannia fumariaefolia SWEET: Constitution of escholidine. Collect. Czechoslov. Chem. Commun. 1970;35:2597–2612. doi: 10.1135/cccc19702597. DOI
Schäfer H.L., Schäfer H., Schneider W., Elstner E.F. Sedative action of extract combinations of Eschscholtzia californica and Corydalis cava. Arzneim.-Forsch. 1995;45:124–126. PubMed
Rolland A., Fleurentin J., Lanhers M.C., Younos C., Misslin R., Mortier F., Pelt J.M. Behavioural effects of the American traditional plant Eschscholzia californica: Sedative and anxiolytic properties. Planta Med. 1991;57:212–216. doi: 10.1055/s-2006-960076. PubMed DOI
Jain L., Tripathi M., Pandey V.B. Alkaloids of Eschscholtzia californica. Planta Med. 1996;62:188. doi: 10.1055/s-2006-957856. PubMed DOI
Bochman M.L., Paeschke K., Zakian V.A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012;13:770–780. doi: 10.1038/nrg3296. PubMed DOI PMC
Takahashi S., Sugimoto N. Quantitative Analysis of Stall of Replicating DNA Polymerase by G-Quadruplex Formation. In: Yang D., Lin C., editors. G-Quadruplex Nucleic Acids: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 257–274. PubMed
Abou Assi H., Garavís M., González C., Damha M.J. i-Motif DNA: Structural features and significance to cell biology. Nucleic Acids Res. 2018;46:8038–8056. doi: 10.1093/nar/gky735. PubMed DOI PMC
Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC
Blackburn G.M. Nucleic Acids in Chemistry and Biology. 3rd ed. Royal Society of Chemistry; Cambridge, UK: 2006.
Khandelwal P., Panchal S.C., Radha P.K., Hosur R.V. Solution structure and dynamics of GCN4 cognate DNA: NMR investigations. Nucleic Acids Res. 2001;29:499–505. doi: 10.1093/nar/29.2.499. PubMed DOI PMC
Phan A.T., Mergny J.L. Human telomeric DNA: G-quadruplex, i-motif and watson-crick double helix. Nucleic Acids Res. 2002;30:4618–4625. doi: 10.1093/nar/gkf597. PubMed DOI PMC
Neidle S. Principles of Nucleic Acid Structure. Academic Press; New York, NY, USA: 2008. 2—The Building-Blocks of DNA and RNA; pp. 20–37.
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Vojtylová T., Dospivová D., Třísková O., Pilařová I., Lubal P., Farková M., Trnková L., Táborský P. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine. Chem. Pap. 2009;63:731–737. doi: 10.2478/s11696-009-0077-8. DOI
Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.-L., Foldynova-Trantirkova S., Trantirek L. Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells. Angew. Chem. Int. Ed. 2018;57:2165–2169. doi: 10.1002/anie.201712284. PubMed DOI PMC
Alba J.J., Sadurní A., Gargallo R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit. Rev. Anal. Chem. 2016;46:443–454. doi: 10.1080/10408347.2016.1143347. PubMed DOI
Jin K.S., Shin S.R., Ahn B., Rho Y., Kim S.J., Ree M. pH-Dependent Structures of an i-Motif DNA in Solution. J. Phys. Chem. B. 2009;113:1852–1856. doi: 10.1021/jp808186z. PubMed DOI
Wright E.P., Huppert J.L., Waller Z.A.E. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017;45:2951–2959. doi: 10.1093/nar/gkx090. PubMed DOI PMC
Gurung S.P., Schwarz C., Hall J.P., Cardin C.J., Brazier J.A. The importance of loop length on the stability of i-motif structures. Chem. Commun. 2015;51:5630–5632. doi: 10.1039/C4CC07279K. PubMed DOI PMC
Brooks T.A., Kendrick S., Hurley L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010;277:3459–3469. doi: 10.1111/j.1742-4658.2010.07759.x. PubMed DOI PMC
Leroy J.-L., Guéron M., Mergny J.-L., Hélène C. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 1994;22:1600–1606. doi: 10.1093/nar/22.9.1600. PubMed DOI PMC
Khan N., Aviñó A., Tauler R., González C., Eritja R., Gargallo R. Solution equilibria of the i-motif-forming region upstream of the B-cell lymphoma-2 P1 promoter. Biochimie. 2007;89:1562–1572. doi: 10.1016/j.biochi.2007.07.026. PubMed DOI
Simonsson T., Pribylova M., Vorlickova M. A Nuclease Hypersensitive Element in the Human c-myc Promoter Adopts Several Distinct i-Tetraplex Structures. Biochem. Biophys. Res. Commun. 2000;278:158–166. doi: 10.1006/bbrc.2000.3783. PubMed DOI
Brazier J.A., Shah A., Brown G.D. I-Motif formation in gene promoters: Unusually stable formation in sequences complementary to known G-quadruplexes. Chem. Commun. 2012;48:10739–10741. doi: 10.1039/c2cc30863k. PubMed DOI
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI
Feng L., Dong Z., Tao D., Zhang Y., Liu Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Nat. Sci. Rev. 2018;5:269–286. doi: 10.1093/nsr/nwx062. DOI
Jarosova P., Sandor R., Slaninkova A., Vido M., Pes O., Taborsky P. Quaternary protoberberine alkaloids and their interactions with DNA. Chem. Pap. 2019;73:2965–2973. doi: 10.1007/s11696-019-00857-z. DOI
Jarosova P., Paroulek P., Rajecky M., Rajecka V., Taborska E., Eritja R., Aviñó A., Mazzini S., Gargallo R., Taborsky P. Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes. Pchys. Chem. Chem. Phys. 2018;20:21772–21782. doi: 10.1039/C8CP02681E. PubMed DOI
Adamcik J., Valle F., Witz G., Rechendorff K., Dietler G. The promotion of secondary structures in single-stranded DNA by drugs that bind to duplex DNA: An atomic force microscopy study. Nanotechnology. 2008;19:384016. doi: 10.1088/0957-4484/19/38/384016. PubMed DOI
Wright E.P., Day H.A., Ibrahim A.M., Kumar J., Boswell L.J.E., Huguin C., Stevenson C.E.M., Pors K., Waller Z.A.E. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences. Sci. Rep. 2016;6:39456. doi: 10.1038/srep39456. PubMed DOI PMC
Mazzini S., Bellucci M.C., Mondelli R. Mode of binding of the cytotoxic alkaloid berberine with the double helix oligonucleotide d(AAGAATTCTT)2. Bioorganic Med. Chem. 2003;11:505–514. doi: 10.1016/S0968-0896(02)00466-2. PubMed DOI
Gargallo R., Aviñó A., Eritja R., Jarosova P., Mazzini S., Scaglioni L., Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;248:119185. doi: 10.1016/j.saa.2020.119185. PubMed DOI
Fernando H., Reszka A.P., Huppert J., Ladame S., Rankin S., Venkitaraman A.R., Neidle S., Balasubramanian S. A Conserved Quadruplex Motif Located in a Transcription Activation Site of the Human c-kit Oncogene. Biochemistry. 2006;45:7854–7860. doi: 10.1021/bi0601510. PubMed DOI PMC
Kuryavyi V., Majumdar A., Shallop A., Chernichenko N., Skripkin E., Jones R., Patel D.J. A double chain reversal loop and two diagonal loops define the architecture of unimolecular DNA quadruplex containing a pair of stacked G(syn)·G(syn)·G(anti)·G(anti) tetrads flanked by a G·(T-T) triad and a T·T·T triple1. J. Mol. Biol. 2001;310:181–194. doi: 10.1006/jmbi.2001.4759. PubMed DOI
Benabou S., Ferreira R., Aviñó A., González C., Lyonnais S., Solà M., Eritja R., Jaumot J., Gargallo R. Solution equilibria of cytosine- and guanine-rich sequences near the promoter region of the n-myc gene that contain stable hairpins within lateral loops. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2014;1840:41–52. doi: 10.1016/j.bbagen.2013.08.028. PubMed DOI
Bell E., Chen L., Liu T., Marshall G.M., Lunec J., Tweddle D.A. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 2010;293:144–157. doi: 10.1016/j.canlet.2010.01.015. PubMed DOI
Mergny J.-L., Riou J.-F., Mailliet P., Teulade-Fichou M.-P., Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acids Res. 2002;30:839–865. doi: 10.1093/nar/30.4.839. PubMed DOI PMC
Datta B., Armitage B.A. Hybridization of PNA to Structured DNA Targets: Quadruplex Invasion and the Overhang Effect. J. Am. Chem. Soc. 2001;123:9612–9619. doi: 10.1021/ja016204c. PubMed DOI
Puglisi J.D., Tinoco I. Absorbency melting curves of RNA. Methods Enzymol. 1989;180:304–325. PubMed
Breslauer K.J. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. Energetics Biol. Macromol. 1995;259:221–242. PubMed
Dyson R.M., Kaderli S., Lawrance G.A., Maeder M. Second order global analysis: The evaluation of series of spectrophotometric titrations for improved determination of equilibrium constants. Anal. Chim. Acta. 1997;353:381–393. doi: 10.1016/S0003-2670(97)87800-2. DOI
Kuryavyi V., Phan A.T., Patel D.J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010;38:6757–6773. doi: 10.1093/nar/gkq558. PubMed DOI PMC
Moraca F., Amato J., Ortuso F., Artese A., Pagano B., Novellino E., Alcaro S., Parrinello M., Limongelli V. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc. Natl. Acad. Sci. USA. 2017;114:E2136–E2145. doi: 10.1073/pnas.1612627114. PubMed DOI PMC
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Gasteiger J., Marsili M. Iterative Partial Equalization of Orbital Electronegativity—A Rapid Access to Atomic Charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI
Sanner M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999;17:57–61. PubMed
Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC
Ambrus A., Chen D., Dai J., Bialis T., Jones R.A., Yang D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006;34:2723–2735. doi: 10.1093/nar/gkl348. PubMed DOI PMC
Benabou S., Aviñó A., Lyonnais S., González C., Eritja R., De Juan A., Gargallo R. i-motif structures in long cytosine-rich sequences found upstream of the promoter region of the SMARCA4 gene. Biochimie. 2017;140:20–33. doi: 10.1016/j.biochi.2017.06.005. PubMed DOI
Kim S., Chen J., Cheng T.J., Gindulyte A., He J., He S.Q., Li Q.L., Shoemaker B.A., Thiessen P.A., Yu B., et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395. doi: 10.1093/nar/gkaa971. PubMed DOI PMC