Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26091027
PubMed Central
PMC4474729
DOI
10.1371/journal.pone.0129925
PII: PONE-D-15-11437
Knihovny.cz E-zdroje
- MeSH
- alkaloidy chemie MeSH
- benzofenantridiny chemie MeSH
- DNA chemie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkaloidy MeSH
- benzofenantridiny MeSH
- DNA MeSH
- rozpouštědla MeSH
Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1).
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Medicine Masaryk University Brno Czech Republic
Materials Research Centre Faculty of Chemistry Brno University of Technology Brno Czech Republic
Zobrazit více v PubMed
Slavik J, Slavikova L. Alkaloide der Mohngewachse (Papaveraceae) .6. Uber die Alkaloide aus Macleaya microcarpa (Maxim.) Fedde. Collect Czechoslov Chem Commun. 1955;20: 356–362.
Slavik J, Slavikova L, Appelt J. Alkaloide der Mohngewachse (Papaveraceae) .28. Uber die Alkaloide aus Macleaya cordata (Willd.) R. Br. Collect Czechoslov Chem Commun. 1965;30: 887–891.
Slavik J, Dolejs L, Hanus V, Cross A. Alkaloids of Papaveraceae .40. Chelirubine, chelilutine, sanguirubine and sanguilutine. Mass and nuclear magnetic resonance spectra of benzophenanthridine alkaloids. Collect Czechoslov Chem Commun. 1968;33: 1619–1623.
Suchomelova J, Bochorakova H, Paulova H, Musil P, Taborska E. HPLC quantification of seven quaternary benzo c phenanthridine alkaloids in six species of the family Papaveraceae. J Pharm Biomed Anal. 2007;44: 283–287. 10.1016/j.jpba.2007.02.005 PubMed DOI
Pencikova K, Urbanova J, Musil P, Taborska E, Gregorova J. Seasonal variation of bioactive alkaloid contents in Macleaya microcarpa (Maxim.) Fedde. Molecules. 2011;16: 3391–3401. 10.3390/molecules16043391 PubMed DOI PMC
Ishikawa T, Saito T, Ishii H. Synthesis of macarpine and its cytotoxicity—toward a synthetic route for 12-alkoxybenzo c phenanthridine alkaloids through aromatic nitrosation under basic condition. Tetrahedron. 1995;51: 8447–8458. 10.1016/0040-4020(95)00460-p DOI
Dostal J, Potacek M. Quaternary benzo c phenanthridine alkaloids. Collect Czechoslov Chem Commun. 1990;55: 2840–2873.
Zdarilova A, Malikova J, Dvorak Z, Ulrichova J, Simanek V. Quaternary isoquinoline alkaloids sanguinarine and chelerythrine. In vitro and in vivo effects. Chem Listy. 2006;100: 30–41.
Slaninova I, Pencikova K, Urbanova J, Slanina J, Taborska E. Antitumour activities of sanguinarine and related alkaloids. Phytochem Rev. 2014;13: 51–68. 10.1007/s11101-013-9290-8 DOI
Sen A, Maiti M. Interaction of sanguinarine iminium and alkanolamine form with calf thymus DNA. Biochem Pharmacol. 1994;48: 2097–2102. 10.1016/0006-2952(94)90510-x PubMed DOI
Islam M, Sinha R, Kumar GS. RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys Chem. 2007;125: 508–520. 10.1016/j.bpc.2006.11.001 PubMed DOI
Hossain M, Khan AY, Kumar GS. Interaction of the anticancer plant alkaloid sanguinarine with bovine serum albumin. Plos One. 2011;6: 12 10.1371/journal.pone.0018333 PubMed DOI PMC
Bai LP, Zhao ZZ, Cai ZW, Jiang ZH. DNA-binding affinities and sequence selectivity of quaternary benzophenanthridine alkaloids sanguinarine, chelerythrine, and nitidine. Bioorg Med Chem. 2006;14: 5439–5445. 10.1016/j.bmc.2006.05.012 PubMed DOI
Bai LP, Cai ZW, Zhao ZZ, Nakatani K, Jiang ZH. Site-specific binding of chelerythrine and sanguinarine to single pyrimidine bulges in hairpin DNA. Anal Bioanal Chem. 2008;392: 709–716. 10.1007/s00216-008-2302-7 PubMed DOI
Bai LP, Hagihara M, Jiang ZH, Nakatani K. Ligand binding to tandem G quadruplexes from human telomeric DNA. Chembiochem. 2008;9: 2583–2587. 10.1002/cbic.200800256 PubMed DOI
Herbert JM, Augereau JM, Gleye J, Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990;172: 993–999. 10.1016/0006-291X(90)91544-3 PubMed DOI
Slaninova I, Taborska E, Bochorakova H, Slanina J. Interaction of benzo c phenanthridine and protoberberine alkaloids with animal and yeast cells. Cell Biol Toxicol. 2001;17: 51–63. PubMed
Slunska Z, Gelnarova E, Hammerova J, Taborska E, Slaninova I. Effect of quaternary benzo c phenanthridine alkaloids sanguilutine and chelilutine on normal and cancer cells. Toxicol In Vitro. 2010;24: 697–706. 10.1016/j.tiv.2010.01.012 PubMed DOI
Slaninova I, Slanina J, Taborska E. Quaternary benzo c phenanthridine alkaloids—Novel cell permeant and red fluorescing DNA probes. Cytometry A. 2007;71A: 700–708. 10.1002/cyto.a.20423 PubMed DOI
Absolinova H, Jancar L, Jancarova I, Vicar J, Kuban V. Acid-base behaviour of sanguinarine and dihydrosanguinarine. Cent Eur J Chem. 2009;7: 876–883. 10.2478/s11532-009-0079-y DOI
Absolinova H, Jancar L, Jancarova I, Vicar J, Kuban V. Spectrophotometric study of time stability and acid-base characteristics of chelerythrine and dihydrochelerythrine. Cent Eur J Chem. 2010;8: 626–632. 10.2478/s11532-010-0038-7 DOI
Janovska M, Kubala M, Simanek V, Ulrichova J. Fluorescence of sanguinarine: fundamental characteristics and analysis of interconversion between various forms. Anal Bioanal Chem. 2009;395: 235–240. 10.1007/s00216-009-2903-9 PubMed DOI
Janovska M, Kubala M, Simanek V, Ulrichova J. Fluorescence of sanguinarine: spectral changes on interaction with amino acids. Phys Chem Chem Phys. 2010;12: 11335–11341. 10.1039/b925828k PubMed DOI
Urbanova J, Lubal P, Slaninova I, Taborska E, Taborsky P. Fluorescence properties of selected benzo c phenantridine alkaloids and studies of their interaction with CT DNA. Anal Bioanal Chem. 2009;394: 997–1002. 10.1007/s00216-009-2601-7 PubMed DOI
Rybakova S, Rajecky M, Urbanova J, Pencikova K, Taborska E, Gargallo R, et al. Interaction of oligonucleotides with benzo c phenanthridine alkaloid sanguilutine. Chem Pap. 2013;67: 568–572. 10.2478/s11696-013-0340-x DOI
Lakowicz JR. Principles of fluorescence spectroscopy 3rd ed New York: Springer; 2006.
Bunting JW, Meathrel WG. Quaternary nitrogen heterocycles .1. Equilibrium and spectral data for pseudobase formation by N-methyl cations of diazanaphthalenes. Can J Chem. 1972;50: 917–931. 10.1139/v72-143 DOI
Bunting JW, Meathrel WG. Quaternary nitrogen heterocycles .2. Kinetics of reversible pseudobase formation from N-methyl heterocyclic cations. Can J Chem-Rev Can Chim. 1973;51: 1965–1972. 10.1139/v73-294 DOI
Mongay C, Cerda V. Britton-Robinson buffer of known ionic strength. Ann Chim. 1974;64: 409–412.
Kovar J, Stejskal J, Paulova H, Slavik J. Reduction of quaternary benzophenanthridine alkaloids by NADH and NADPH. Collect Czechoslov Chem Commun. 1986;51: 2626–2634.
Gu Q, Kenny JE. Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter. Anal Chem. 2009;81: 420–426. 10.1021/ac801676j PubMed DOI
Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinase. Anal Biochem. 1996;237: 260–273. 10.1006/abio.1996.0238 PubMed DOI
Dean RB, Dixon WJ. Simplified statistics for small numbers of observations. Anal Chem. 1951;23: 636–638. 10.1021/ac60052a025 DOI
Melhuish WH. Quantum efficiencies of fluorescence of organic substances—Effect of solvent and concentration of fluorescent solute. J Phys Chem. 1961;65: 229–&. 10.1021/j100820a009 DOI
Valeur B, Berberan-Santos MN. Molecular fluorescence: principles and applications 2nd ed Weinheim: Wiley-VCH; 2013.
Haynes WM, Lide DR, Bruno TJ, editors. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data 94th ed Boca Raton: CRC Press; 2013.
Motevich IG, Strekal ND, Nowicky JW, Maskevich SA. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA. J Appl Spectrosc. 2010;77: 394–399. 10.1007/s10812-010-9344-2 DOI
Kovar J, Simek K, Kozouskova E, Klukanova H, Slavik J. Fluorescence properties of some isoquinoline alkaloids. Collect Czechoslov Chem Commun. 1985;50: 1312–1328.
Qu XG, Chaires JB. Analysis of drug-DNA binding data In: Johnson M, Brand L, Abelson J, Simon M, editors. Numerical Computer Methods, Part C. San Diego: Elsevier Academic Press Inc; 2000. pp. 353–369. PubMed
Bhadra K, Maiti M, Kumar GS. Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine. Biochim Biophys Acta-Gen Subj. 2007;1770: 1071–1080. 10.1016/j.bbagen.2007.03.001 PubMed DOI
Adhikari A, Hossain M, Maiti M, Kumar GS. Energetics of the binding of phototoxic and cytotoxic plant alkaloid sanguinarine to DNA: Isothermal titration calorimetric studies. J Mol Struct. 2008;889: 54–63. 10.1016/j.molstruc.2008.01.016 DOI
Maiti M, Kumar GS. Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev. 2007;27: 649–695. 10.1002/med.20087 PubMed DOI
Kumar GS, Das A, Maiti M. Photochemical conversion of sanguinarine to oxysanguinarine. J Photochem Photobiol-Chem. 1997;111: 51–56. 10.1016/s1010-6030(97)00246-3 DOI
Gregorova J, Babica J, Marek R, Paulova H, Taborska E, Dostal J. Extractions of isoquinoline alkaloids with butanol and octanol. Fitoterapia. 2010;81: 565–568. 10.1016/j.fitote.2010.01.020 PubMed DOI