Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
27302C0028
NIEHS NIH HHS - United States
R01 ES020941
NIEHS NIH HHS - United States
PubMed
29488382
PubMed Central
PMC5863099
DOI
10.1021/acs.est.7b05752
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu * MeSH
- geologické sedimenty * MeSH
- hodnocení rizik MeSH
- monitorování životního prostředí MeSH
- organické látky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- organické látky MeSH
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (
Deltares P O Box 85467 3508 AL Utrecht The Netherlands
ExxonMobil Biomedical Sciences Incorporated 1545 US 22 East Annandale New Jersey 08822 United States
Norwegian Geotechnical Institute Environmental Technology Sognsveien 72 0806 Oslo Norway
Zobrazit více v PubMed
Di Toro D. M.; Zarba C. S.; Hansen D. J.; Berry W. J.; Swartz R. C.; Cowan C. E.; Pavlou S. P.; Allen H. E.; Thomas N. A.; Paquin P. R. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 1991, 10 (12), 1541–1583. 10.1002/etc.5620101203. DOI
Parkerton T. F.; Maruya K. A. Passive sampling in contaminated sediment assessment: building consensus to improve decision making. Integr. Environ. Assess. Manage. 2014, 10 (2), 163–166. 10.1002/ieam.1488. PubMed DOI
Mayer P.; Parkerton T. F.; Adams R. G.; Cargill J. G.; Gan J.; Gouin T.; Gschwend P. M.; Hawthorne S. B.; Helm P.; Witt G.; You J.; Escher B. I. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manage. 2014, 10 (2), 197–209. 10.1002/ieam.1508. PubMed DOI PMC
Lydy M. J.; Landrum P. F.; Oen A. M.; Allinson M.; Smedes F.; Harwood A. D.; Li H.; Maruya K. A.; Liu J. Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr. Environ. Assess. Manage. 2014, 10 (2), 167–178. 10.1002/ieam.1503. PubMed DOI PMC
Ghosh U.; Kane Driscoll S.; Burgess R. M.; Jonker M. T.; Reible D.; Gobas F.; Choi Y.; Apitz S. E.; Maruya K. A.; Gala W. R.; Mortimer M.; Beegan C. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manage. 2014, 10 (2), 210–223. 10.1002/ieam.1507. PubMed DOI PMC
Burkhard L. P.; Mount D. R.; Burgess R. M.. Developing sediment remediation goals at superfund sites based on porewater for the protection of benthic life from direct toxicity to nonionic organic chemicals. U.S Environmental Protection Agency; WA, 2017, 74 pp.
Kupryianchyk D.; Rakowska M. I.; Roessink I.; Reichman E. P.; Grotenhuis J. T. C.; Koelmans A. A. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains. Environ. Sci. Technol. 2013, 47 (9), 4563–4571. 10.1021/es305265x. PubMed DOI
Van der Heijden S. A.; Jonker M. T. O. PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation. Environ. Sci. Technol. 2009, 43 (10), 3757–3763. 10.1021/es803329p. PubMed DOI
Jonker M. T. O.; Smedes F. Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environ. Sci. Technol. 2000, 34 (9), 1620–1626. 10.1021/es9906251. DOI
Jonker M. T. O.; Van Der Heijden S. A.; Kotte M.; Smedes F. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol. 2015, 49 (11), 6791–6799. 10.1021/acs.est.5b00286. PubMed DOI
Gschwend P. M.; MacFarlane J. K.; Reible D. D.; Lu X.; Hawthorne S. B.; Nakles D. V.; Thompson T. Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ. Toxicol. Chem. 2011, 30 (6), 1288–1296. 10.1002/etc.510. PubMed DOI
Booij K.; Robinson C. D.; Burgess R. M.; Mayer P.; Roberts C. A.; Ahrens L.; Allan I. J.; Brant J.; Jones L.; Kraus U. R.; Larsen M. M.; Lepom P.; Petersen J.; Pröfrock D.; Roose P.; Schäfer S.; Smedes F.; Tixier C.; Vorkamp K.; Whitehouse P. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment. Environ. Sci. Technol. 2016, 50 (1), 3–17. 10.1021/acs.est.5b04050. PubMed DOI
Booij K.; Smedes F.; Allan I. J.. Guidelines for Determining Polymer-Water and Polymer-Polymer Partition Coefficients of Organic Compounds. ICES Techniques in Marine Environmental Sciences; 2017, 32 pp.
Smedes F.; Van Vliet L. A.; Booij K. Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ. Sci. Technol. 2013, 47 (1), 510–517. 10.1021/es3040945. PubMed DOI
Apell J. N.; Gschwend P. M. Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ. Sci. Technol. 2014, 48 (17), 10301–10307. 10.1016/j.trac.2015.10.013. PubMed DOI
Fernandez L. A.; Harvey C. F.; Gschwend P. M. Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ. Sci. Technol. 2009, 43 (23), 8888–8894. 10.1016/j.trac.2015.10.013. PubMed DOI
Vrana B.; Smedes F.; Prokeš R.; Loos R.; Mazzella N.; Miege C.; Budzinski H.; Vermeirssen E.; Ocelka T.; Gravell A.; Kaserzon S. An interlaboratory study on passive sampling of emerging water pollutants. TrAC, Trends Anal. Chem. 2016, 76, 153–165. 10.1016/j.trac.2015.10.013. DOI
Booij K.; Smedes F.; Crum S. Laboratory performance study for passive sampling of nonpolar chemicals in water. Environ. Toxicol. Chem. 2017, 36 (5), 1156–1161. 10.1002/etc.3657. PubMed DOI
Hawthorne S. B.; Jonker M. T. O.; Van Der Heijden S. A.; Grabanski C. B.; Azzolina N. A.; Miller D. J. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem. 2011, 83 (17), 6754–6761. 10.1021/ac201411v. PubMed DOI