Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

. 2018 Mar 20 ; 52 (6) : 3574-3582. [epub] 20180228

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29488382

Grantová podpora
27302C0028 NIEHS NIH HHS - United States
R01 ES020941 NIEHS NIH HHS - United States

This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (

Atlantic Ecology Division Office of Research and Development U S Environmental Protection Agency Narragansett Rhode Island 02882 United States

Center for Fisheries Aquaculture and Aquatic Sciences and Department of Zoology Southern Illinois University Carbondale Illinois 62901 United States

Civil Environmental and Construction Engineering Texas Tech University Box 41023 Lubbock Texas 79409 1023 United States

Deltares P O Box 85467 3508 AL Utrecht The Netherlands

Department of Chemical Biochemical and Environmental Engineering University of Maryland Baltimore County 1000 Hilltop Circle Baltimore Maryland 21250 United States

Department of Civil and Environmental Engineering Northeastern University 360 Huntington Avenue Boston Massachusetts 02115 United States

Department of Civil and Environmental Engineering Seoul National University 1 Gwanak ro Gwanak gu Seoul 08826 Republic of Korea

Department of Civil and Environmental Engineering Stanford University 473 Via Ortega Stanford California 94305 United States

Department of Environmental Sciences Faculty of Science Alexandria University 21511 Moharam Bek Alexandria Egypt

ExxonMobil Biomedical Sciences Incorporated 1545 US 22 East Annandale New Jersey 08822 United States

Graduate School of Oceanography University of Rhode Island South Ferry Road URI Bay Campus Narragansett Rhode Island 02882 United States

Institute for Risk Assessment Sciences Utrecht University ; Yalelaan 104 3584 CM Utrecht The Netherlands

Masaryk University Faculty of Science Research Centre for Toxic Compounds in the Environment Kamenice 753 5 62500 Brno Czech Republic

Norwegian Geotechnical Institute Environmental Technology Sognsveien 72 0806 Oslo Norway

RM Parsons Laboratory Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 United States

Southern California Coastal Water Research Project Authority 3535 Harbor Boulevard Suite 110 Costa Mesa California 92626 United States

Zobrazit více v PubMed

Di Toro D. M.; Zarba C. S.; Hansen D. J.; Berry W. J.; Swartz R. C.; Cowan C. E.; Pavlou S. P.; Allen H. E.; Thomas N. A.; Paquin P. R. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 1991, 10 (12), 1541–1583. 10.1002/etc.5620101203. DOI

Parkerton T. F.; Maruya K. A. Passive sampling in contaminated sediment assessment: building consensus to improve decision making. Integr. Environ. Assess. Manage. 2014, 10 (2), 163–166. 10.1002/ieam.1488. PubMed DOI

Mayer P.; Parkerton T. F.; Adams R. G.; Cargill J. G.; Gan J.; Gouin T.; Gschwend P. M.; Hawthorne S. B.; Helm P.; Witt G.; You J.; Escher B. I. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manage. 2014, 10 (2), 197–209. 10.1002/ieam.1508. PubMed DOI PMC

Lydy M. J.; Landrum P. F.; Oen A. M.; Allinson M.; Smedes F.; Harwood A. D.; Li H.; Maruya K. A.; Liu J. Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr. Environ. Assess. Manage. 2014, 10 (2), 167–178. 10.1002/ieam.1503. PubMed DOI PMC

Ghosh U.; Kane Driscoll S.; Burgess R. M.; Jonker M. T.; Reible D.; Gobas F.; Choi Y.; Apitz S. E.; Maruya K. A.; Gala W. R.; Mortimer M.; Beegan C. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manage. 2014, 10 (2), 210–223. 10.1002/ieam.1507. PubMed DOI PMC

Burkhard L. P.; Mount D. R.; Burgess R. M.. Developing sediment remediation goals at superfund sites based on porewater for the protection of benthic life from direct toxicity to nonionic organic chemicals. U.S Environmental Protection Agency; WA, 2017, 74 pp.

Kupryianchyk D.; Rakowska M. I.; Roessink I.; Reichman E. P.; Grotenhuis J. T. C.; Koelmans A. A. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains. Environ. Sci. Technol. 2013, 47 (9), 4563–4571. 10.1021/es305265x. PubMed DOI

Van der Heijden S. A.; Jonker M. T. O. PAH bioavailability in field sediments: Comparing different methods for predicting in situ bioaccumulation. Environ. Sci. Technol. 2009, 43 (10), 3757–3763. 10.1021/es803329p. PubMed DOI

Jonker M. T. O.; Smedes F. Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environ. Sci. Technol. 2000, 34 (9), 1620–1626. 10.1021/es9906251. DOI

Jonker M. T. O.; Van Der Heijden S. A.; Kotte M.; Smedes F. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol. 2015, 49 (11), 6791–6799. 10.1021/acs.est.5b00286. PubMed DOI

Gschwend P. M.; MacFarlane J. K.; Reible D. D.; Lu X.; Hawthorne S. B.; Nakles D. V.; Thompson T. Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ. Toxicol. Chem. 2011, 30 (6), 1288–1296. 10.1002/etc.510. PubMed DOI

Booij K.; Robinson C. D.; Burgess R. M.; Mayer P.; Roberts C. A.; Ahrens L.; Allan I. J.; Brant J.; Jones L.; Kraus U. R.; Larsen M. M.; Lepom P.; Petersen J.; Pröfrock D.; Roose P.; Schäfer S.; Smedes F.; Tixier C.; Vorkamp K.; Whitehouse P. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment. Environ. Sci. Technol. 2016, 50 (1), 3–17. 10.1021/acs.est.5b04050. PubMed DOI

Booij K.; Smedes F.; Allan I. J.. Guidelines for Determining Polymer-Water and Polymer-Polymer Partition Coefficients of Organic Compounds. ICES Techniques in Marine Environmental Sciences; 2017, 32 pp.

Smedes F.; Van Vliet L. A.; Booij K. Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ. Sci. Technol. 2013, 47 (1), 510–517. 10.1021/es3040945. PubMed DOI

Apell J. N.; Gschwend P. M. Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ. Sci. Technol. 2014, 48 (17), 10301–10307. 10.1016/j.trac.2015.10.013. PubMed DOI

Fernandez L. A.; Harvey C. F.; Gschwend P. M. Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ. Sci. Technol. 2009, 43 (23), 8888–8894. 10.1016/j.trac.2015.10.013. PubMed DOI

Vrana B.; Smedes F.; Prokeš R.; Loos R.; Mazzella N.; Miege C.; Budzinski H.; Vermeirssen E.; Ocelka T.; Gravell A.; Kaserzon S. An interlaboratory study on passive sampling of emerging water pollutants. TrAC, Trends Anal. Chem. 2016, 76, 153–165. 10.1016/j.trac.2015.10.013. DOI

Booij K.; Smedes F.; Crum S. Laboratory performance study for passive sampling of nonpolar chemicals in water. Environ. Toxicol. Chem. 2017, 36 (5), 1156–1161. 10.1002/etc.3657. PubMed DOI

Hawthorne S. B.; Jonker M. T. O.; Van Der Heijden S. A.; Grabanski C. B.; Azzolina N. A.; Miller D. J. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem. 2011, 83 (17), 6754–6761. 10.1021/ac201411v. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...