A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer

. 2015 Jun ; 26 (6) : 1194-1200. [epub] 20150409

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu klinické zkoušky, fáze III, srovnávací studie, časopisecké články, multicentrická studie, randomizované kontrolované studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25858497
Odkazy

PubMed 25858497
PubMed Central PMC4516046
DOI 10.1093/annonc/mdv133
PII: S0923-7534(19)31808-3
Knihovny.cz E-zdroje

BACKGROUND: Masitinib is a selective oral tyrosine-kinase inhibitor. The efficacy and safety of masitinib combined with gemcitabine was compared against single-agent gemcitabine in patients with advanced pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: Patients with inoperable, chemotherapy-naïve, PDAC were randomized (1 : 1) to receive gemcitabine (1000 mg/m(2)) in combination with either masitinib (9 mg/kg/day) or a placebo. The primary endpoint was overall survival (OS) in the modified intent-to-treat population. Secondary OS analyses aimed to characterize subgroups with poor survival while receiving single-agent gemcitabine with subsequent evaluation of masitinib therapeutic benefit. These prospectively declared subgroups were based on pharmacogenomic data or a baseline characteristic. RESULTS: Three hundred and fifty-three patients were randomly assigned to receive either masitinib plus gemcitabine (N = 175) or placebo plus gemcitabine (N = 178). Median OS was similar between treatment-arms for the overall population, at respectively, 7.7 and 7.1 months, with a hazard ratio (HR) of 0.89 (95% CI [0.70; 1.13]. Secondary analyses identified two subgroups having a significantly poor survival rate when receiving single-agent gemcitabine; one defined by an overexpression of acyl-CoA oxidase-1 (ACOX1) in blood, and another via a baseline pain intensity threshold (VAS > 20 mm). These subgroups represent a critical unmet medical need as evidenced from median OS of 5.5 months in patients receiving single-agent gemcitabine, and comprise an estimated 63% of patients. A significant treatment effect was observed in these subgroups for masitinib with median OS of 11.7 months in the 'ACOX1' subgroup [HR = 0.23 (0.10; 0.51), P = 0.001], and 8.0 months in the 'pain' subgroup [HR = 0.62 (0.43; 0.89), P = 0.012]. Despite an increased toxicity of the combination as compared with single-agent gemcitabine, side-effects remained manageable. CONCLUSIONS: The present data warrant initiation of a confirmatory study that may support the use of masitinib plus gemcitabine for treatment of PDAC patients with overexpression of ACOX1 or baseline pain (VAS > 20mm). Masitinib's effect in these subgroups is also supported by biological plausibility and evidence of internal clinical validation. TRIAL REGISTRATION: ClinicalTrials.gov:NCT00789633.

Zobrazit více v PubMed

Heinemann V, Boeck S, Hinke A, et al. Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer 2008; 8: 82. PubMed PMC

Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369(18): 1691–1703. PubMed PMC

Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25(15): 1960–1966. PubMed

Humbert M, Castéran N, Letard S, et al. Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model. PLoS ONE 2010; 5: e9430. PubMed PMC

Mitry E, Hammel P, Deplanque G, et al. Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 2010; 66(2): 395–403. PubMed

Zelvyte I, Ohlsson B, Axelson J, Janciauskiene S. Diverse responses between human pancreatic cancer cell lines to native alpha 1-antitrypsin and its C-terminal fragment. Anticancer Res 2003; 23(3B): 2267–2273. PubMed

Winter JM, Tang LH, Klimstra DS, et al. A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers. PLoS One 2012; 7(7): e40157. PubMed PMC

Chang DZ, Ma Y, Ji B, et al. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 2011; 17(22): 7015–7023. PubMed PMC

Protti MP, De Monte L. Immune infiltrates as predictive markers of survival in pancreatic cancer patients. Front Physiol 2013; 4: 210. PubMed PMC

Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One 2009; 4(9): e7258. PubMed PMC

Demir IE, Schorn S, Schremmer-Danninger E, et al. Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One 2013; 8(3): e60529. PubMed PMC

Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 2009; 1796(1): 19–26. PubMed PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT00789633

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...