Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.01.01/00/22_008/0004644
Czech Ministry of Education Youth and Sports
PerMed TN02000109
Technology Agency of the Czech Republic
PubMed
39123358
PubMed Central
PMC11311849
DOI
10.3390/cancers16152630
PII: cancers16152630
Knihovny.cz E-zdroje
- Klíčová slova
- CAR-T cell, Lck, NK cytotoxicity, Src kinases, T-cell cytotoxicity, cell adhesion, cell proliferation, hematologic tumors, solid tumors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research.
Czech Advanced Technologies and Research Institute 77900 Olomouc Czech Republic
Faculty of Science Palacky University 77900 Olomouc Czech Republic
Laboratory of Experimental Medicine University Hospital Olomouc 77900 Olomouc Czech Republic
Zobrazit více v PubMed
P06239·LCK_Human. [(accessed on 9 June 2024)]. Available online: https://www.uniprot.org/uniprotkb/P06239/entry.
Serfas M.S., Tyner A.L. BRK, SRM, FRK, and SRC42A form a distinct family of intracellular SRC-Like tyrosine kinases. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2003;13:409–419. doi: 10.3727/096504003108748438. PubMed DOI
Parsons S.J., Parsons J.T. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23:7906–7909. doi: 10.1038/sj.onc.1208160. PubMed DOI
Palacios E.H., Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23:7990–8000. doi: 10.1038/sj.onc.1208074. PubMed DOI
Levin S.E., Weiss A. Non-Receptor Tyrosine Kinases in T Cell Antigen Receptor Function. In: Bradshaw R.A., Dennis E.A., editors. Handbook of Cell Signaling. 2nd ed. Academic Press; Cambridge, MA, USA: 2009. pp. 507–516. Chapter 68. DOI
Clarke C.N., Lee M.S., Wei W., Manyam G., Jiang Z.-Q., Lu Y., Morris J., Broom B., Menter D., Vilar-Sanchez E., et al. Proteomic Features of Colorectal Cancer Identify Tumor Subtypes Independent of Oncogenic Mutations and Independently Predict Relapse-Free Survival. Ann. Surg. Oncol. 2017;24:4051–4058. doi: 10.1245/s10434-017-6054-5. PubMed DOI PMC
Janikowska G., Janikowski T., Pyka-Pająk A., Mazurek U., Janikowski M., Gonciarz M., Lorenc Z. Potential Biomarkers for the Early Diagnosis of Colorectal Adenocarcinoma—Transcriptomic Analysis of Four Clinical Stages. Cancer Biomark. 2018;22:89–99. doi: 10.3233/CBM-170984. PubMed DOI
Bommhardt U., Schraven B., Simeoni L. Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int. J. Mol. Sci. 2019;20:3500. doi: 10.3390/ijms20143500. PubMed DOI PMC
Chakraborty G., Rangaswami H., Jain S., Kundu G.C. Hypoxia Regulates Cross-talk between Syk and Lck Leading to Breast Cancer Progression and Angiogenesis. J. Biol. Chem. 2006;281:11322–11331. doi: 10.1074/jbc.M512546200. PubMed DOI
Köster A., Landgraf S., Leipold A., Sachse R., Gebhart E., Tulusan A.H., Rónay G., Schmidt C., Dingermann T. Expression of Oncogenes in Human Breast Cancer Specimens. Anticancer Res. 1991;11:193–201. PubMed
Rupniewska E., Roy R., Mauri F.A., Liu X., Kaliszczak M., Bellezza G., Cagini L., Barbareschi M., Ferrero S., Tommasi A.M., et al. Targeting Autophagy Sensitises Lung Cancer Cells to Src Family Kinase Inhibitors. Oncotarget. 2018;9:27346–27362. doi: 10.18632/oncotarget.25213. PubMed DOI PMC
Sugihara T., Werneburg N.W., Hernandez M.C., Yang L., Kabashima A., Hirsova P., Yohanathan L., Sosa C., Truty M.J., Vasmatzis G., et al. YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity. Mol. Cancer Res. 2018;16:1556–1567. doi: 10.1158/1541-7786.MCR-18-0158. PubMed DOI PMC
Zepecki J.P., Snyder K.M., Moreno M.M., Fajardo E., Fiser A., Ness J., Sarkar A., Toms S.A., Tapinos N. Regulation of Human Glioma Cell Migration, Tumor Growth, and Stemness Gene Expression Using a Lck Targeted Inhibitor. Oncogene. 2018;38:1734–1750. doi: 10.1038/s41388-018-0546-z. PubMed DOI PMC
The Cancer Genome Atlas Network Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044. PubMed DOI PMC
Creeden J.F., Alganem K., Imami A.S., Henkel N.D., Brunicardi F.C., Liu S.-H., Shukla R., Tomar T., Naji F., McCullumsmith R.E. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int. J. Mol. Sci. 2020;21:8823. doi: 10.3390/ijms21228823. PubMed DOI PMC
Filipp D., Ballek O., Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front. Immunol. 2012;3:23330. doi: 10.3389/fimmu.2012.00155. PubMed DOI PMC
Shah K., Al-Haidari A., Sun J., Kazi J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021;6:412. doi: 10.1038/s41392-021-00823-w. PubMed DOI PMC
Porciello N., Cipria D., Masi G., Lanz A.-L., Milanetti E., Grottesi A., Howie D., Cobbold S.P., Schermelleh L., He H.-T., et al. Role of the membrane anchor in the regulation of Lck activity. J. Biol. Chem. 2022;298:102663. doi: 10.1016/j.jbc.2022.102663. PubMed DOI PMC
Kocyła A.M., Czogalla A., Wessels I., Rink L., Krężel A. A combined biochemical and cellular approach reveals Zn2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure. 2024;32:292–303.e7. doi: 10.1016/j.str.2023.11.013. PubMed DOI
Chen Y., Li Y., Wu L. Protein S-palmitoylation modification: Implications in tumor and tumor immune microenvironment. Front. Immunol. 2024;15:1337478. doi: 10.3389/fimmu.2024.1337478. PubMed DOI PMC
Gauthaman A., Jacob R., Pasupati S., Rajadurai A., Doss C.G.P., Moorthy A. Novel peptide—Based inhibitor for targeted inhibition of T cell function. J. Cell Commun. Signal. 2021;16:349–359. doi: 10.1007/s12079-021-00660-0. PubMed DOI PMC
Tate E.W., Soday L., de la Lastra A.L., Wang M., Lin H. Protein lipidation in cancer: Mechanisms, dysregulation and emerging drug targets. Nat. Rev. Cancer. 2024;24:240–260. doi: 10.1038/s41568-024-00666-x. PubMed DOI
Yang W., Bai Y., Xiong Y., Zhang J., Chen S., Zheng X., Meng X., Li L., Wang J., Xu C., et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature. 2016;531:651–655. doi: 10.1038/nature17412. PubMed DOI PMC
Ma X., Bi E., Lu Y., Su P., Huang C., Liu L., Wang Q., Yang M., Kalady M.F., Qian J., et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metab. 2019;30:143–156.e5. doi: 10.1016/j.cmet.2019.04.002. PubMed DOI PMC
Wang Q., Cao Y., Shen L., Xiao T., Cao R., Wei S., Tang M., Du L., Wu H., Wu B., et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci. Adv. 2022;8:eabq4722. doi: 10.1126/sciadv.abq4722. PubMed DOI PMC
Jiang H., Zhang X., Chen X., Aramsangtienchai P., Tong Z., Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem. Rev. 2018;118:919–988. doi: 10.1021/acs.chemrev.6b00750. PubMed DOI PMC
Sitaram P., Uyemura B., Malarkannan S., Riese M.J. Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int. J. Mol. Sci. 2019;20:5821. doi: 10.3390/ijms20235821. PubMed DOI PMC
Sheng R., Jung D.-J., Silkov A., Kim H., Singaram I., Wang Z.-G., Xin Y., Kim E., Park M.-J., Thiagarajan-Rosenkranz P., et al. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J. Biol. Chem. 2016;291:17639–17650. doi: 10.1074/jbc.M116.720284. PubMed DOI PMC
Kabouridis P.S., Janzen J., Magee A.L., Ley S.C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur. J. Immunol. 2000;30:954–963. doi: 10.1002/1521-4141(200003)30:3<954::AID-IMMU954>3.0.CO;2-Y. PubMed DOI
Tripathi S., Gupta E., Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep. 2024;7:e2078. doi: 10.1002/cnr2.2078. PubMed DOI PMC
Chamani S., Kooshkaki O., Moossavi M., Rastegar M., Soflaei S.S., McCloskey A.P., Banach M., Sahebkar A. The effects of statins on the function and differentiation of blood cells. Arch. Med. Sci. 2022;19:1314–1326. doi: 10.5114/aoms/158546. PubMed DOI PMC
Benjamin D.J., Haslam A., Prasad V. Cardiovascular/anti-inflammatory drugs repurposed for treating or preventing cancer: A systematic review and meta-analysis of randomized trials. Cancer Med. 2024;13:e7049. doi: 10.1002/cam4.7049. PubMed DOI PMC
Mariuzza R.A., Shahid S., Karade S.S. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J. Biol. Chem. 2024;300:107241. doi: 10.1016/j.jbc.2024.107241. PubMed DOI PMC
Nika K., Soldani C., Salek M., Paster W., Gray A., Etzensperger R., Fugger L., Polzella P., Cerundolo V., Dushek O., et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32:766–777. doi: 10.1016/j.immuni.2010.05.011. PubMed DOI PMC
Fernández-Aguilar L.M., Vico-Barranco I., Arbulo-Echevarria M.M., Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. Biology. 2023;12:1163. doi: 10.3390/biology12091163. PubMed DOI PMC
Bozso S.J., Kang J.J.H., Nagendran J. The role of competing mechanisms on Lck regulation. Immunol. Res. 2020;68:289–295. doi: 10.1007/s12026-020-09148-2. PubMed DOI
Kesavan K.P., Isaacson C.C., Ashendel C.L., Geahlen R.L., Harrison M.L. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation. J. Biol. Chem. 2002;277:14666–14673. doi: 10.1074/jbc.M111911200. PubMed DOI
Wu J., Li G., Li L., Li D., Dong Z., Jiang P. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat. Cell Biol. 2021;23:75–86. doi: 10.1038/s41556-020-00615-4. PubMed DOI
Wang Q., Zhu T., Miao N., Qu Y., Wang Z., Chao Y., Wang J., Wu W., Xu X., Xu C., et al. Disulfiram bolsters T-cell anti-tumor immunity through direct activation of LCK-mediated TCR signaling. EMBO J. 2022;41:e110636. doi: 10.15252/embj.2022110636. PubMed DOI PMC
Rheinländer A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol. Lett. 2018;196:22–32. doi: 10.1016/j.imlet.2018.01.009. PubMed DOI
Inderberg E.M., Mensali N., Oksvold M.P., Fallang L.-E., Fåne A., Skorstad G., Stenvik G.-E., Progida C., Bakke O., Kvalheim G., et al. Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunol. Immunother. 2017;67:525–536. doi: 10.1007/s00262-017-2105-9. PubMed DOI PMC
Zhu S., Wang H., Ranjan K., Zhang D. Regulation, targets and functions of CSK. Front. Cell Dev. Biol. 2023;11:1206539. doi: 10.3389/fcell.2023.1206539. PubMed DOI PMC
Hui E., Vale R.D. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Biol. 2014;21:133–142. doi: 10.1038/nsmb.2762. PubMed DOI PMC
Kästle M., Merten C., Hartig R., Kaehne T., Liaunardy-Jopeace A., Woessner N.M., Schamel W.W., James J., Minguet S., Simeoni L., et al. Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56Lck regulates T-cell activation independently of Lck/CD45 interactions. Cell Commun. Signal. 2020;18:183. doi: 10.1186/s12964-020-00673-z. PubMed DOI PMC
Courtney A.H., Amacher J.F., Kadlecek T.A., Mollenauer M.N., Au-Yeung B.B., Kuriyan J., Weiss A. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol. Cell. 2017;67:498–511.e6. doi: 10.1016/j.molcel.2017.06.024. PubMed DOI PMC
Kästle M., Merten C., Hartig R., Plaza-Sirvent C., Schmitz I., Bommhardt U., Schraven B., Simeoni L. Y192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int. J. Mol. Sci. 2022;23:7271. doi: 10.3390/ijms23137271. PubMed DOI PMC
Prakaash D., Fagnen C., Cook G.P., Acuto O., Kalli A.C. Molecular dynamics simulations reveal membrane lipid interactions of the full-length lymphocyte specific kinase (Lck) Sci. Rep. 2022;12:21121. doi: 10.1038/s41598-022-25603-6. PubMed DOI PMC
Brian B.F., Sjaastad F.V., Freedman T.S. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci. Rep. 2022;12:5875. doi: 10.1038/s41598-022-09589-9. PubMed DOI PMC
Okada M. Regulation of the Src Family Kinases by Csk. Int. J. Biol. Sci. 2012;8:1385–1397. doi: 10.7150/ijbs.5141. PubMed DOI PMC
Hur E.M., Son M., Lee O.-H., Choi Y.B., Park C., Lee H., Yun Y. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J. Exp. Med. 2003;198:1463–1473. doi: 10.1084/jem.20030232. PubMed DOI PMC
Ventimiglia L.N., Alonso M.A. The role of membrane rafts in Lck transport, regulation and signalling in T-cells. Biochem. J. 2013;454:169–179. doi: 10.1042/BJ20130468. PubMed DOI
Strazza M., Azoulay-Alfaguter I., Peled M., Adam K., Mor A. Transmembrane adaptor protein PAG is a mediator of PD-1 inhibitory signaling in human T cells. Commun. Biol. 2021;4:672. doi: 10.1038/s42003-021-02225-8. PubMed DOI PMC
Borowicz P., Sundvold V., Chan H., Abrahamsen G., Kjelstrup H., Nyman T.A., Spurkland A. Tyr192 Regulates Lymphocyte-Specific Tyrosine Kinase Activity in T Cells. J. Immunol. 2021;207:1128–1137. doi: 10.4049/jimmunol.2001105. PubMed DOI
Schultz A., Schnurra M., El-Bizri A., Woessner N.M., Hartmann S., Hartig R., Minguet S., Schraven B., Simeoni L. A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells. 2022;11:2723. doi: 10.3390/cells11172723. PubMed DOI PMC
Feng S., Cheng X., Zhang L., Lu X., Chaudhary S., Teng R., Frederickson C., Champion M.M., Zhao R., Cheng L., et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc. Natl. Acad. Sci. USA. 2018;115:10094–10099. doi: 10.1073/pnas.1800695115. PubMed DOI PMC
Mohanasundaram K.A., Haworth N.L., Grover M.P., Crowley T.M., Goscinski A., Wouters M.A. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front. Pharmacol. 2015;6:1. doi: 10.3389/fphar.2015.00001. PubMed DOI PMC
Nakamura K., Hori T., Yodoi J. Alternative binding of p56lck and phosphatidylinositol 3-kinase in T cells by sulfhydryl oxidation: Implication of aberrant signaling due to oxidative stress in T lymphocytes. Mol. Immunol. 1996;33:855–865. doi: 10.1016/0161-5890(96)84611-6. PubMed DOI
Lasser S.A., Kurt F.G.O., Arkhypov I., Utikal J., Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 2024;21:147–164. doi: 10.1038/s41571-023-00846-y. PubMed DOI
Rudd C.E. How the Discovery of the CD4/CD8-p56lck Complexes Changed Immunology and Immunotherapy. Front. Cell Dev. Biol. 2021;9:626095. doi: 10.3389/fcell.2021.626095. PubMed DOI PMC
Liang Y., Ye L. Bound to be perfect: Lck and T cell co-receptors. Nat. Immunol. 2023;24:5–7. doi: 10.1038/s41590-022-01392-y. PubMed DOI
Horkova V., Drobek A., Mueller D., Gubser C., Niederlova V., Wyss L., King C.G., Zehn D., Stepanek O. Dynamics of the Coreceptor-LCK Interactions during T Cell Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. Cell Rep. 2020;30:1504–1514.e7. doi: 10.1016/j.celrep.2020.01.008. PubMed DOI PMC
Qin Z., Hou P., Lin H., Chen M., Wang R., Xu T. Inhibition of Lck/Fyn kinase activity promotes the differentiation of induced Treg cells through AKT/mTOR pathway. Int. Immunopharmacol. 2024;134:112237. doi: 10.1016/j.intimp.2024.112237. PubMed DOI
Le Page A., Dupuis G., Larbi A., Witkowski J.M., Fülöp T. Signal transduction changes in CD4 + and CD8 + T cell subpopulations with aging. Exp. Gerontol. 2018;105:128–139. doi: 10.1016/j.exger.2018.01.005. PubMed DOI
Tedeschi V., Paldino G., Kunkl M., Paroli M., Sorrentino R., Tuosto L., Fiorillo M.T. CD8+ T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int. J. Mol. Sci. 2022;23:3374. doi: 10.3390/ijms23063374. PubMed DOI PMC
Braga F.A.V., Hertoghs K.M.L., van Lier R.A., van Gisbergen K.P.J.M. Molecular characterization of HCMV-specific immune responses: Parallels between CD8+ T cells, CD4+ T cells, and NK cells. Eur. J. Immunol. 2015;45:2433–2445. doi: 10.1002/eji.201545495. PubMed DOI
Esensten J.H., Helou Y.A., Chopra G., Weiss A., Bluestone J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity. 2016;44:973–988. doi: 10.1016/j.immuni.2016.04.020. PubMed DOI PMC
Paprckova D., Niederlova V., Moudra A., Drobek A., Pribikova M., Janusova S., Schober K., Neuwirth A., Michalik J., Huranova M., et al. Self-reactivity of CD8 T-cell clones determines their differentiation status rather than their responsiveness in infections. Front. Immunol. 2022;13:1009198. doi: 10.3389/fimmu.2022.1009198. PubMed DOI PMC
Kwon J., Devadas S., Williams M. T Cell Receptor-Stimulated Generation of Hydrogen Peroxide Inhibits MEK-ERK Activation and Lck Serine Phosphorylation. Free. Radic. Biol. Med. 2003;35:406–417. doi: 10.1016/S0891-5849(03)00318-6. PubMed DOI
Franklin R.A., Atherfold P.A., McCubrey J.A. Calcium-Induced ERK Activation in Human T Lymphocytes Occurs via P56(Lck) and CaM-Kinase. Mol. Immunol. 2000;37:675–683. doi: 10.1016/S0161-5890(00)00087-0. PubMed DOI
Rodriguez-Rodriguez C., González-Mancha N., Ochoa-Echeverría A., Mérida I. Sorting Nexin 27-dependent regulation of Lck and CD4 tunes the initial stages of T-cell activation. J. Leukoc. Biol. 2024:qiae086. doi: 10.1093/jleuko/qiae086. advance online publication . PubMed DOI
Trefny M.P., Kirchhammer N., der Maur P.A., Natoli M., Schmid D., Germann M., Rodriguez L.F., Herzig P., Lötscher J., Akrami M., et al. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat. Commun. 2023;14:86. doi: 10.1038/s41467-022-35583-w. PubMed DOI PMC
Overduin M., Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. Biochim. Biophys. Acta (BBA)-Biomembr. 2024;1866:184305. doi: 10.1016/j.bbamem.2024.184305. PubMed DOI
Rao N., Miyake S., Reddi A.L., Douillard P., Ghosh A.K., Dodge I.L., Zhou P., Fernandes N.D., Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl. Acad. Sci. USA. 2002;99:3794–3799. doi: 10.1073/pnas.062055999. PubMed DOI PMC
Kashiwakura J.I., Oritani K., Matsuda T. The Functional Properties and Physiological Roles of Signal-Transducing Adaptor Protein-2 in the Pathogenesis of Inflammatory and Immune Disorders. Biomedicines. 2022;10:3079. doi: 10.3390/biomedicines10123079. PubMed DOI PMC
Shao Y., Elly C., Liu Y. Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Rep. 2003;4:425–431. doi: 10.1038/sj.embor.embor813. PubMed DOI PMC
Jeon M.-S., Atfield A., Venuprasad K., Krawczyk C., Sarao R., Elly C., Yang C., Arya S., Bachmaier K., Su L., et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity. 2004;21:167–177. doi: 10.1016/j.immuni.2004.07.013. PubMed DOI
Matalon O., Fried S., Ben-Shmuel A., Pauker M.H., Joseph N., Keizer D., Piterburg M., Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal. 2016;9:ra54. doi: 10.1126/scisignal.aad6182. PubMed DOI
Shi Y., Strasser A., Green D.R., Latz E., Mantovani A., Melino G. Legacy of the discovery of the T-cell receptor: 40 years of shaping basic immunology and translational work to develop novel therapies. Cell Mol. Immunol. 2024;21:790–797. doi: 10.1038/s41423-024-01168-4. PubMed DOI PMC
Augustin R.C., Bao R., Luke J.J. Targeting Cbl-b in cancer immunotherapy. J. Immunother. Cancer. 2023;11:e006007. doi: 10.1136/jitc-2022-006007. PubMed DOI PMC
Yu. Cooper, J C.; Shi, M.; Chueh, F.-Y.; Venkitachalam, S.; Yu, C.-L. Enforced SOCS1 and SOCS3 expression attenuates Lck-mediated cellular transformation. Int. J. Oncol. 2010;36:1201–1208. doi: 10.3892/ijo_00000603. PubMed DOI PMC
Shih Y.-C., Chen H.-F., Wu C.-Y., Ciou Y.-R., Wang C.-W., Chuang H.-C., Tan T.-H. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Nat. Commun. 2024;15:532. doi: 10.1038/s41467-024-44843-w. PubMed DOI PMC
Jury E.C., Kabouridis P.S., Abba A., Mageed R.A., Isenberg D.A. Increased ubiquitination and reduced expression of LCK in T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48:1343–1354. doi: 10.1002/art.10978. PubMed DOI
Huang L., Zhu P., Xia P., Fan Z. WASH has a critical role in NK cell cytotoxicity through Lck-mediated phosphorylation. Cell Death Dis. 2016;7:e2301. doi: 10.1038/cddis.2016.212. PubMed DOI PMC
Moore E.K., Strazza M., Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front. Immunol. 2022;13:927265. doi: 10.3389/fimmu.2022.927265. PubMed DOI PMC
Chiang G.G., Sefton B.M. Specific Dephosphorylation of the Lck Tyrosine Protein Kinase at Tyr-394 by the SHP-1 Protein-tyrosine Phosphatase. J. Biol. Chem. 2001;276:23173–23178. doi: 10.1074/jbc.M101219200. PubMed DOI
Baldanzi G. Immune Checkpoint Receptors Signaling in T Cells. Int. J. Mol. Sci. 2022;23:3529. doi: 10.3390/ijms23073529. PubMed DOI PMC
Celis-Gutierrez J., Blattmann P., Zhai Y., Jarmuzynski N., Ruminski K., Grégoire C., Ounoughene Y., Fiore F., Aebersold R., Roncagalli R., et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep. 2019;27:3315–3330.e7. doi: 10.1016/j.celrep.2019.05.041. PubMed DOI PMC
Li K., Yuan Z., Lyu J., Ahn E., Davis S.J., Ahmed R., Zhu C. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat. Commun. 2021;12:2746. doi: 10.1038/s41467-021-22965-9. PubMed DOI PMC
Wang R., He S., Long J., Wang Y., Jiang X., Chen M., Wang J. Emerging therapeutic frontiers in cancer: Insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp. Hematol. Oncol. 2024;13:46. doi: 10.1186/s40164-024-00515-5. PubMed DOI PMC
Chyuan I.-T., Liao H.-J., Tan T.-H., Chuang H.-C., Chu Y.-C., Pan M.-H., Wu C.-S., Chu C.-L., Sheu B.-C., Hsu P.-N. Association of TRAIL receptor with phosphatase SHP-1 enables repressing T cell receptor signaling and T cell activation through inactivating Lck. J. Biomed. Sci. 2024;31:33. doi: 10.1186/s12929-024-01023-8. PubMed DOI PMC
Lai T.-C., Fang C.-Y., Jan Y.-H., Hsieh H.-L., Yang Y.-F., Liu C.-Y., Chang P.M.-H., Hsiao M. Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway. Cell Commun. Signal. 2020;18:164. doi: 10.1186/s12964-020-00600-2. PubMed DOI PMC
Poirier A., Ormonde J.V.S., Aubry I., Abidin B.M., Feng C.-H., Martinez-Cordova Z., Hincapie A.M., Wu C., Pérez-Quintero L.A., Wang C.-L., et al. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci. Signal. 2024;17:eadg4422. doi: 10.1126/scisignal.adg4422. PubMed DOI
Graydon C.G., Mohideen S., Fowke K.R. LAG3’s Enigmatic Mechanism of Action. Front. Immunol. 2021;11:615317. doi: 10.3389/fimmu.2020.615317. PubMed DOI PMC
Guy C., Mitrea D.M., Chou P.-C., Temirov J., Vignali K.M., Liu X., Zhang H., Kriwacki R., Bruchez M.P., Watkins S.C., et al. LAG3 associates with TCR–CD3 complexes and suppresses signaling by driving co-receptor–Lck dissociation. Nat. Immunol. 2022;23:757–767. doi: 10.1038/s41590-022-01176-4. PubMed DOI PMC
Luke J.J., Luke J.J., Patel M.R., Patel M.R., Blumenschein G.R., Blumenschein G.R., Hamilton E., Hamilton E., Chmielowski B., Chmielowski B., et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial. Nat. Med. 2023;29:2814–2824. doi: 10.1038/s41591-023-02593-0. PubMed DOI PMC
Binder C., Cvetkovski F., Sellberg F., Berg S., Visbal H.P., Sachs D.H., Berglund E., Berglund D. CD2 Immunobiology. Front. Immunol. 2020;11:1090. doi: 10.3389/fimmu.2020.01090. PubMed DOI PMC
Nunes R.J., Castro M.A.A., Gonçalves C.M., Bamberger M., Pereira C.F., Bismuth G., Carmo A.M. Protein Interactions between CD2 and Lck Are Required for the Lipid Raft Distribution of CD2. J. Immunol. 2008;180:988–997. doi: 10.4049/jimmunol.180.2.988. PubMed DOI
Burgueño-Bucio E., Mier-Aguilar C.A., Soldevila G. The multiple faces of CD5. J. Leukoc. Biol. 2019;105:891–904. doi: 10.1002/JLB.MR0618-226R. PubMed DOI
Baaten B.J., Li C.-R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010;3:508–512. doi: 10.4161/cib.3.6.13495. PubMed DOI PMC
Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC
Chen C., Zhao S., Karnad A., Freeman J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018;11:64. doi: 10.1186/s13045-018-0605-5. PubMed DOI PMC
Duan H., Jing L., Jiang X., Ma Y., Wang D., Xiang J., Chen X., Wu Z., Yan H., Jia J., et al. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J. Clin. Investig. 2021;131:e148568. doi: 10.1172/JCI148568. PubMed DOI PMC
Raychaudhuri S.K., Abria C., Raychaudhuri S.P. Phenotype and pathological significance of MCAM+ (CD146+) T cell subset in psoriatic arthritis. Mol. Biol. Rep. 2021;48:6787–6796. doi: 10.1007/s11033-021-06678-2. PubMed DOI PMC
Al-Harbi N.O., Ahmad S.F., Almutairi M., Alanazi A.Z., Ibrahim K.E., Alqarni S.A., Alqahtani F., Alhazzani K., Alharbi M., Alasmari F., et al. Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model. Cell. Immunol. 2022;376:104531. doi: 10.1016/j.cellimm.2022.104531. PubMed DOI
McArdel S.L., Terhorst C., Sharpe A.H. Roles of CD48 in regulating immunity and tolerance. Clin. Immunol. 2016;164:10–20. doi: 10.1016/j.clim.2016.01.008. PubMed DOI PMC
Li B., Lu Y., Zhong M.-C., Qian J., Li R., Davidson D., Tang Z., Zhu K., Argenty J., de Peredo A.G., et al. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci. Immunol. 2022;7:eabn6373. doi: 10.1126/sciimmunol.abn6373. PubMed DOI
Bharti R., Dey G., Lin F., Lathia J., Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett. 2022;551:215935. doi: 10.1016/j.canlet.2022.215935. PubMed DOI PMC
Saygin C., Wiechert A., Rao V.S., Alluri R., Connor E., Thiagarajan P.S., Hale J.S., Li Y., Chumakova A., Jarrar A., et al. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J. Exp. Med. 2017;214:2715–2732. doi: 10.1084/jem.20170438. PubMed DOI PMC
Giustiniani J., Bensussan A., Marie-Cardine A. Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J. Immunol. 2009;182:63–71. doi: 10.4049/jimmunol.182.1.63. PubMed DOI PMC
Oumeslakht L., Aziz A.-I., Bensussan A., Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front. Immunol. 2022;13:1028013. doi: 10.3389/fimmu.2022.1028013. PubMed DOI PMC
Zhan F., He L., Yu Y., Chen Q., Guo Y., Wang L. A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer. Sci. Rep. 2023;13:16397. doi: 10.1038/s41598-023-43543-7. PubMed DOI PMC
Wang F., Zheng A., Zhang D., Zou T., Xiao M., Chen J., Wen B., Wen Q., Wu X., Li M., et al. Molecular profiling of core immune-escape genes highlights LCK as an immune-related prognostic biomarker in melanoma. Front. Immunol. 2022;13:1024931. doi: 10.3389/fimmu.2022.1024931. PubMed DOI PMC
Weiße J., Rosemann J., Müller L., Kappler M., Eckert A.W., Glaß M., Misiak D., Hüttelmaier S., Ballhausen W.G., Hatzfeld M., et al. Identification of lymphocyte cell-specific protein-tyrosine kinase (LCK) as a driver for invasion and migration of oral cancer by tumor heterogeneity exploitation. Mol. Cancer. 2021;20:88. doi: 10.1186/s12943-021-01384-w. PubMed DOI PMC
Vahedi S., Chueh F.-Y., Dutta S., Chandran B., Yu C.-L. Nuclear lymphocyte-specific protein tyrosine kinase and its interaction with CR6-interacting factor 1 promote the survival of human leukemic T cells. Oncol. Rep. 2015;34:43–50. doi: 10.3892/or.2015.3990. PubMed DOI PMC
Dey G., Bharti R., Braley C., Alluri R., Esakov E., Crean-Tate K., McCrae K., Joehlin-Price A., Rose P.G., Lathia J., et al. LCK facilitates DNA damage repair by stabilizing RAD51 and BRCA1 in the nucleus of chemoresistant ovarian cancer. J. Ovarian Res. 2023;16:122. doi: 10.1186/s13048-023-01194-2. PubMed DOI PMC
Kumari G., Singhal P., Suryaraja R., Mahalingam S. Functional Interaction of the Ras Effector RASSF5 with the Tyrosine Kinase Lck: Critical Role in Nucleocytoplasmic Transport and Cell Cycle Regulation. J. Mol. Biol. 2010;397:89–109. doi: 10.1016/j.jmb.2010.01.005. PubMed DOI
Huang L., Li H., Zhang C., Chen Q., Liu Z., Zhang J., Luo P., Wei T. Unlocking the potential of T-cell metabolism reprogramming: Advancing single-cell approaches for precision immunotherapy in tumour immunity. Clin. Transl. Med. 2024;14:e1620. doi: 10.1002/ctm2.1620. PubMed DOI PMC
Zhang J., Wu Y.-J., Hu X.-X., Wei W. New insights into the Lck-NF-κB signaling pathway. Front. Cell Dev. Biol. 2023;11:1120747. doi: 10.3389/fcell.2023.1120747. PubMed DOI PMC
Huang Y., Li S., Liu Q., Wang Z., Li S., Liu L., Zhao W., Wang K., Zhang R., Wang L., et al. The LCK-14-3-3ζ-TRPM8 axis regulates TRPM8 function/assembly and promotes pancreatic cancer malignancy. Cell Death Dis. 2022;13:524. doi: 10.1038/s41419-022-04977-5. PubMed DOI PMC
Honikel M.M., Olejniczak S.H. Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules. 2022;12:1303. doi: 10.3390/biom12091303. PubMed DOI PMC
Curio S., Jonsson G., Marinović S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 2021;1:ltab018. doi: 10.1093/immadv/ltab018. PubMed DOI PMC
Czaplicka A., Lachota M., Pączek L., Zagożdżon R., Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence. Cells. 2024;13:101. doi: 10.3390/cells13010101. PubMed DOI PMC
Deng Y., Kumar A., Xie K., Schaaf K., Scifo E., Morsy S., Li T., Ehninger A., Bano D., Ehninger D. Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov. 2024;10:217. doi: 10.1038/s41420-024-01976-7. PubMed DOI PMC
Acharya S., Basar R., Daher M., Rafei H., Li P., Uprety N., Ensley E., Shanley M., Kumar B., Banerjee P.P., et al. CD28 costimulation augments CAR signaling in NK cells via the LCK/CD3Z/ZAP70 signaling axis. Cancer Discov. 2024:1–22. doi: 10.1158/2159-8290.CD-24-0096. PubMed DOI PMC
Wu L., Brzostek J., Vale P.D.S., Wei Q., Koh C.K., Ong J.X.H., Wu L.-Z., Tan J.C., Chua Y.L., Yap J., et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep. Med. 2023;4:100917. doi: 10.1016/j.xcrm.2023.100917. PubMed DOI PMC
Zhang J., Zhang J., Jiang Z., Jiang Z., Zhang X., Zhang X., Yang Z., Yang Z., Wang J., Wang J., et al. THEMIS is a substrate and allosteric activator of SHP1, playing dual roles during T cell development. Nat. Struct. Mol. Biol. 2024;31:54–67. doi: 10.1038/s41594-023-01131-3. PubMed DOI
Goldsmith M.A., Weiss A. Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. Proc. Natl. Acad. Sci. USA. 1987;84:6879–6883. doi: 10.1073/pnas.84.19.6879. PubMed DOI PMC
Oh-Hori N., Koga Y., Yoshida H., Morita M., Kimura G., Nomoto K. Human T-cell leukemia virus type-I-infected T-cell lines scarcely produce p56lck, whether or not they express lck mRNA. Int. J. Cancer. 1990;46:315–319. doi: 10.1002/ijc.2910460229. PubMed DOI
Hauck F., Randriamampita C., Martin E., Gerart S., Lambert N., Lim A., Soulier J., Maciorowski Z., Touzot F., Moshous D., et al. Primary T-Cell Immunodeficiency with Immunodysregulation Caused by Autosomal Recessive LCK Deficiency. J. Allergy Clin. Immunol. 2012;130:1144–1152.e11. doi: 10.1016/j.jaci.2012.07.029. PubMed DOI
Lanz A.-L., Erdem S., Ozcan A., Ceylaner G., Cansever M., Ceylaner S., Conca R., Magg T., Acuto O., Latour S., et al. A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature. J. Clin. Immunol. 2023;44:1. doi: 10.1007/s10875-023-01602-8. PubMed DOI PMC
Lui V.G., Hoenig M., Cabrera-Martinez B., Baxter R.M., Garcia-Perez J.E., Bailey O., Acharya A., Lundquist K., Capera J., Matusewicz P., et al. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J. Exp. Med. 2023;221:e20230927. doi: 10.1084/jem.20230927. PubMed DOI PMC
Guérin A., Moncada-Vélez M., Jackson K., Ogishi M., Rosain J., Mancini M., Langlais D., Nunez A., Webster S., Goyette J., et al. Helper T cell immunity in humans with inherited CD4 deficiency. J. Exp. Med. 2024;221:e20231044. doi: 10.1084/jem.20231044. PubMed DOI PMC
Hulme J.S., Barratt B.J., Twells R.C., Cooper J.D., Lowe C.E., Howson J.M., Lam A.C., Smink L.J., Savage D.A., Undlien D.E., et al. Association Analysis of the Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Gene in Type 1 Diabetes. Diabetes. 2004;53:2479–2482. doi: 10.2337/diabetes.53.9.2479. PubMed DOI
Zhu Q., Wang J., Zhang L., Bian W., Lin M., Xu X., Zhou X. LCK Rs10914542-G Allele Associates with Type 1 Diabetes in Children via T Cell Hyporesponsiveness. Pediatr. Res. 2019;86:311–315. doi: 10.1038/s41390-019-0436-2. PubMed DOI
Han M., Li Y., Guo Y., Zhu W., Jiang J. Integrative and Comprehensive Pan-Cancer Analysis of Lymphocyte-Specific Protein Tyrosine Kinase in Human Tumors. Int. J. Mol. Sci. 2022;23:13998. doi: 10.3390/ijms232213998. PubMed DOI PMC
Bai F., Jin Y., Zhang P., Chen H., Fu Y., Zhang M., Weng Z., Wu K. Bioinformatic profiling of prognosis-related genes in the breast cancer immune microenvironment. Aging. 2019;11:9328–9347. doi: 10.18632/aging.102373. PubMed DOI PMC
Elkamhawy A., Ali E.M.H., Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: A decade review (2011–2021) focussing on structure–activity relationship (SAR) and docking insights. J. Enzym. Inhib. Med. Chem. 2021;36:1572–1600. doi: 10.1080/14756366.2021.1937143. PubMed DOI PMC
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024;200:107059. doi: 10.1016/j.phrs.2024.107059. PubMed DOI
Musumeci F., Schenone S. Unlocking Potential and Limits of Kinase Inhibitors: The Highway to Enhanced Cancer Targeted Therapy. Pharmaceutics. 2024;16:625. doi: 10.3390/pharmaceutics16050625. PubMed DOI PMC
Chen Y., Zhang K., Tan J., Fan Z., Fu Y., Li X., Liu B., Wang G. Design, synthesis, and pharmacological evaluation of novel benzothiazole derivatives targeting LCK in acute lymphoblastic leukemia. Bioorg. Chem. 2024;144:107–180. doi: 10.1016/j.bioorg.2024.107180. PubMed DOI
Lee K.C., Ouwehand I., Giannini A.L., Thomas N.S., Dibb N.J., Bijlmakers M.J. Lck Is a Key Target of Imatinib and Dasatinib in T-Cell Activation. Leukemia. 2010;24:896–900. doi: 10.1038/leu.2010.11. PubMed DOI
Dasatinib. [(accessed on 13 July 2024)]. Available online: https://go.drugbank.com/drugs/DB01254.
Cheng Y., Ji C., Xu J., Chen R., Guo Y., Bian Q., Shen Z., Zhang B. LCK-SafeScreen-Model: An Advanced Ensemble Machine Learning Approach for Estimating the Binding Affinity between Compounds and LCK Target. Molecules. 2023;28:7382. doi: 10.3390/molecules28217382. PubMed DOI PMC
Schindler C.G., Armbrust T., Gunawan B., Langer C., Füzesi L., Ramadori G. Gastrointestinal stromal tumor (GIST)—Single center experience of prolonged treatment with imatinib. Z. Gastroenterol. 2005;43:267–273. doi: 10.1055/s-2004-813756. PubMed DOI
Schlemmer M., Bauer S., Schütte R., Hartmann J., Bokemeyer C., Hosius C., Reichardt P. Activity and side effects of imatinib in patients with gastrointestinal stromal tumors: Data from a German multicenter trial. Eur. J. Med. Res. 2011;16:206–212. doi: 10.1186/2047-783X-16-5-206. PubMed DOI PMC
Lam T.J.R., Udonwa S.A., Masuda Y., Yeo M.H.X., Ras M.F.b.H., Goh B.K.P. A systematic review and meta-analysis of neoadjuvant imatinib use in locally advanced and metastatic gastrointestinal stromal tumors. World J. Surg. 2024;48:1681–1691. doi: 10.1002/wjs.12210. PubMed DOI
Karim N.A., Ullah A., Wang H., Shoukier M., Pulliam S., Khaled A., Patel N., Morris J.C. A Phase I Study of the Non-Receptor Kinase Inhibitor Bosutinib in Combination with Pemetrexed in Patients with Selected Metastatic Solid Tumors. Curr. Oncol. 2022;29:9461–9473. doi: 10.3390/curroncol29120744. PubMed DOI PMC
Deplanque G., Demarchi M., Hebbar M., Flynn P., Melichar B., Atkins J., Nowara E., Moyé L., Piquemal D., Ritter D., et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann. Oncol. 2015;26:1194–1200. doi: 10.1093/annonc/mdv133. PubMed DOI PMC
Adenis A., Blay J.-Y., Bui-Nguyen B., Bouché O., Bertucci F., Isambert N., Bompas E., Chaigneau L., Domont J., Ray-Coquard I., et al. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: A randomized controlled open-label trial. Ann. Oncol. 2014;25:1762–1769. doi: 10.1093/annonc/mdu237. PubMed DOI PMC
Le Cesne A., Blay J.-Y., Bui B.N., Bouché O., Adenis A., Domont J., Cioffi A., Ray-Coquard I., Lassau N., Bonvalot S., et al. Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST) Eur. J. Cancer. 2010;46:1344–1351. doi: 10.1016/j.ejca.2010.02.014. PubMed DOI
Larkin J., Marais R., Porta N., de Castro D.G., Parsons L., Messiou C., Stamp G., Thompson L., Edmonds K., Sarker S., et al. Nilotinib in KIT-driven advanced melanoma: Results from the phase II single-arm NICAM trial. Cell Rep. Med. 2024;5:101435. doi: 10.1016/j.xcrm.2024.101435. PubMed DOI PMC
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol.-Res. Pract. 2024;253:154953. doi: 10.1016/j.prp.2023.154953. PubMed DOI
Barnwal A., Das S., Bhattacharyya J. Repurposing Ponatinib as a PD-L1 Inhibitor Revealed by Drug Repurposing Screening and Validation by In Vitro and In Vivo Experiments. ACS Pharmacol. Transl. Sci. 2023;6:281–289. doi: 10.1021/acsptsci.2c00214. PubMed DOI PMC
Li L., Cui Y., Shen J., Dobson H., Sun G. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leuk. Res. 2019;78:12–20. doi: 10.1016/j.leukres.2019.01.006. PubMed DOI
Frumento D., Grossi G., Falesiedi M., Musumeci F., Carbone A., Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int. J. Mol. Sci. 2024;25:1398. doi: 10.3390/ijms25031398. PubMed DOI PMC
Harada D., Isozaki H., Kozuki T., Yokoyama T., Yoshioka H., Bessho A., Hosokawa S., Takata I., Takigawa N., Hotta K., et al. Crizotinib for recurring non-small-cell lung cancer with EML4-ALK fusion genes previously treated with alectinib: A phase II trial. Thorac. Cancer. 2021;12:643–649. doi: 10.1111/1759-7714.13825. PubMed DOI PMC
Camidge D.R., Bang Y.-J., Kwak E.L., Iafrate A.J., Varella-Garcia M., Fox S.B., Riely G.J., Solomon B., Ou S.-H.I., Kim D.-W., et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: Updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–1019. doi: 10.1016/S1470-2045(12)70344-3. PubMed DOI PMC
Cruz B.D., Barbosa M.M., Torres L.L., Azevedo P.S., Silva V.E.A., Godman B., Alvares-Teodoro J. Crizotinib Versus Conventional Chemotherapy in First-Line Treatment for ALK-Positive Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Oncol. Ther. 2021;9:505–524. doi: 10.1007/s40487-021-00155-3. PubMed DOI PMC
Tanaka A., Nishikawa H., Noguchi S., Sugiyama D., Morikawa H., Takeuchi Y., Ha D., Shigeta N., Kitawaki T., Maeda Y., et al. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J. Exp. Med. 2019;217:e20191009. doi: 10.1084/jem.20191009. PubMed DOI PMC
Burchat A., Borhani D.W., Calderwood D.J., Hirst G.C., Li B., Stachlewitz R.F. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorganic Med. Chem. Lett. 2006;16:118–122. doi: 10.1016/j.bmcl.2005.09.039. PubMed DOI
Singh P.K., Kashyap A., Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed. Pharmacother. 2018;108:1565–1571. doi: 10.1016/j.biopha.2018.10.002. PubMed DOI
Kagawa K., Sato S., Koyama K., Imakura T., Murakami K., Yamashita Y., Naito N., Ogawa H., Kawano H., Nishioka Y. The lymphocyte-specific protein tyrosine kinase-specific inhibitor A-770041 attenuates lung fibrosis via the suppression of TGF-β production in regulatory T-cells. PLoS ONE. 2022;17:e0275987. doi: 10.1371/journal.pone.0275987. PubMed DOI PMC
Alqarni S.A., Bineid A., Ahmad S.F., Al-Harbi N.O., Alqahtani F., Ibrahim K.E., Ali N., Nadeem A. Blockade of Tyrosine Kinase, LCK Leads to Reduction in Airway Inflammation through Regulation of Pulmonary Th2/Treg Balance and Oxidative Stress in Cockroach Extract-Induced Mouse Model of Allergic Asthma. Metabolites. 2022;12:793. doi: 10.3390/metabo12090793. PubMed DOI PMC
Carter N.M., Pomerantz J.L. Calcineurin inhibitors target Lck activation in graft-versus-host disease. J. Clin. Investig. 2021;131:e149934. doi: 10.1172/JCI149934. PubMed DOI PMC
Srour M., Alsuliman T., Labreuche J., Bulabois C.-E., Chevallier P., Daguindau E., Forcade E., François S., Guillerm G., Coiteux V., et al. Nilotinib efficacy and safety as salvage treatment following imatinib intolerance and/or inefficacy in steroid refractory chronic graft-versus-host-disease (SR-cGVHD): A prospective, multicenter, phase II study on behalf of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) Bone Marrow Transplant. 2023;58:401–406. doi: 10.1038/s41409-022-01898-x. PubMed DOI
Olivieri A., Mancini G., Olivieri J., Busilacchi E.M., Cimminiello M., Pascale S.P., Nuccorini R., Patriarca F., Corradini P., Bacigalupo A., et al. Nilotinib in steroid-refractory cGVHD: Prospective parallel evaluation of response, according to NIH criteria and exploratory response criteria (GITMO criteria) Bone Marrow Transplant. 2020;55:2077–2086. doi: 10.1038/s41409-020-0902-9. PubMed DOI
Lin C.-T., Hsueh P.-R., Wu S.-J., Yao M., Ko B.-S., Li C.-C., Hsu C.-A., Tang J.-L., Tien H.-F. Repurposing Nilotinib for Cytomegalovirus Infection Prophylaxis after Allogeneic Hematopoietic Stem Cell Transplantation: A Single-Arm, Phase II Trial. Biol. Blood Marrow Transplant. 2018;24:2310–2315. doi: 10.1016/j.bbmt.2018.07.013. PubMed DOI
Martin M.W., Newcomb J., Nunes J.J., McGowan D.C., Armistead D.M., Boucher C., Buchanan J.L., Buckner W., Chai L., Elbaum D., et al. Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of Lck: Synthesis, SAR, and in vivo antiinflammatory activity. J. Med. Chem. 2006;49:4981–4991. doi: 10.1021/jm060435i. PubMed DOI
Zhou F., Yao H., Ma Z., Hu X. Investigating small molecule compounds targeting psoriasis based on cMAP database and molecular dynamics simulation. Ski. Res. Technol. 2023;29:e13301. doi: 10.1111/srt.13301. PubMed DOI PMC