Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event

. 2024 Jul 24 ; 16 (15) : . [epub] 20240724

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39123358

Grantová podpora
CZ.02.01.01/00/22_008/0004644 Czech Ministry of Education Youth and Sports
PerMed TN02000109 Technology Agency of the Czech Republic

Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research.

Erratum v

PubMed

Zobrazit více v PubMed

P06239·LCK_Human. [(accessed on 9 June 2024)]. Available online: https://www.uniprot.org/uniprotkb/P06239/entry.

Serfas M.S., Tyner A.L. BRK, SRM, FRK, and SRC42A form a distinct family of intracellular SRC-Like tyrosine kinases. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2003;13:409–419. doi: 10.3727/096504003108748438. PubMed DOI

Parsons S.J., Parsons J.T. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23:7906–7909. doi: 10.1038/sj.onc.1208160. PubMed DOI

Palacios E.H., Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23:7990–8000. doi: 10.1038/sj.onc.1208074. PubMed DOI

Levin S.E., Weiss A. Non-Receptor Tyrosine Kinases in T Cell Antigen Receptor Function. In: Bradshaw R.A., Dennis E.A., editors. Handbook of Cell Signaling. 2nd ed. Academic Press; Cambridge, MA, USA: 2009. pp. 507–516. Chapter 68. DOI

Clarke C.N., Lee M.S., Wei W., Manyam G., Jiang Z.-Q., Lu Y., Morris J., Broom B., Menter D., Vilar-Sanchez E., et al. Proteomic Features of Colorectal Cancer Identify Tumor Subtypes Independent of Oncogenic Mutations and Independently Predict Relapse-Free Survival. Ann. Surg. Oncol. 2017;24:4051–4058. doi: 10.1245/s10434-017-6054-5. PubMed DOI PMC

Janikowska G., Janikowski T., Pyka-Pająk A., Mazurek U., Janikowski M., Gonciarz M., Lorenc Z. Potential Biomarkers for the Early Diagnosis of Colorectal Adenocarcinoma—Transcriptomic Analysis of Four Clinical Stages. Cancer Biomark. 2018;22:89–99. doi: 10.3233/CBM-170984. PubMed DOI

Bommhardt U., Schraven B., Simeoni L. Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int. J. Mol. Sci. 2019;20:3500. doi: 10.3390/ijms20143500. PubMed DOI PMC

Chakraborty G., Rangaswami H., Jain S., Kundu G.C. Hypoxia Regulates Cross-talk between Syk and Lck Leading to Breast Cancer Progression and Angiogenesis. J. Biol. Chem. 2006;281:11322–11331. doi: 10.1074/jbc.M512546200. PubMed DOI

Köster A., Landgraf S., Leipold A., Sachse R., Gebhart E., Tulusan A.H., Rónay G., Schmidt C., Dingermann T. Expression of Oncogenes in Human Breast Cancer Specimens. Anticancer Res. 1991;11:193–201. PubMed

Rupniewska E., Roy R., Mauri F.A., Liu X., Kaliszczak M., Bellezza G., Cagini L., Barbareschi M., Ferrero S., Tommasi A.M., et al. Targeting Autophagy Sensitises Lung Cancer Cells to Src Family Kinase Inhibitors. Oncotarget. 2018;9:27346–27362. doi: 10.18632/oncotarget.25213. PubMed DOI PMC

Sugihara T., Werneburg N.W., Hernandez M.C., Yang L., Kabashima A., Hirsova P., Yohanathan L., Sosa C., Truty M.J., Vasmatzis G., et al. YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity. Mol. Cancer Res. 2018;16:1556–1567. doi: 10.1158/1541-7786.MCR-18-0158. PubMed DOI PMC

Zepecki J.P., Snyder K.M., Moreno M.M., Fajardo E., Fiser A., Ness J., Sarkar A., Toms S.A., Tapinos N. Regulation of Human Glioma Cell Migration, Tumor Growth, and Stemness Gene Expression Using a Lck Targeted Inhibitor. Oncogene. 2018;38:1734–1750. doi: 10.1038/s41388-018-0546-z. PubMed DOI PMC

The Cancer Genome Atlas Network Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044. PubMed DOI PMC

Creeden J.F., Alganem K., Imami A.S., Henkel N.D., Brunicardi F.C., Liu S.-H., Shukla R., Tomar T., Naji F., McCullumsmith R.E. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int. J. Mol. Sci. 2020;21:8823. doi: 10.3390/ijms21228823. PubMed DOI PMC

Filipp D., Ballek O., Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front. Immunol. 2012;3:23330. doi: 10.3389/fimmu.2012.00155. PubMed DOI PMC

Shah K., Al-Haidari A., Sun J., Kazi J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021;6:412. doi: 10.1038/s41392-021-00823-w. PubMed DOI PMC

Porciello N., Cipria D., Masi G., Lanz A.-L., Milanetti E., Grottesi A., Howie D., Cobbold S.P., Schermelleh L., He H.-T., et al. Role of the membrane anchor in the regulation of Lck activity. J. Biol. Chem. 2022;298:102663. doi: 10.1016/j.jbc.2022.102663. PubMed DOI PMC

Kocyła A.M., Czogalla A., Wessels I., Rink L., Krężel A. A combined biochemical and cellular approach reveals Zn2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure. 2024;32:292–303.e7. doi: 10.1016/j.str.2023.11.013. PubMed DOI

Chen Y., Li Y., Wu L. Protein S-palmitoylation modification: Implications in tumor and tumor immune microenvironment. Front. Immunol. 2024;15:1337478. doi: 10.3389/fimmu.2024.1337478. PubMed DOI PMC

Gauthaman A., Jacob R., Pasupati S., Rajadurai A., Doss C.G.P., Moorthy A. Novel peptide—Based inhibitor for targeted inhibition of T cell function. J. Cell Commun. Signal. 2021;16:349–359. doi: 10.1007/s12079-021-00660-0. PubMed DOI PMC

Tate E.W., Soday L., de la Lastra A.L., Wang M., Lin H. Protein lipidation in cancer: Mechanisms, dysregulation and emerging drug targets. Nat. Rev. Cancer. 2024;24:240–260. doi: 10.1038/s41568-024-00666-x. PubMed DOI

Yang W., Bai Y., Xiong Y., Zhang J., Chen S., Zheng X., Meng X., Li L., Wang J., Xu C., et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature. 2016;531:651–655. doi: 10.1038/nature17412. PubMed DOI PMC

Ma X., Bi E., Lu Y., Su P., Huang C., Liu L., Wang Q., Yang M., Kalady M.F., Qian J., et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metab. 2019;30:143–156.e5. doi: 10.1016/j.cmet.2019.04.002. PubMed DOI PMC

Wang Q., Cao Y., Shen L., Xiao T., Cao R., Wei S., Tang M., Du L., Wu H., Wu B., et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci. Adv. 2022;8:eabq4722. doi: 10.1126/sciadv.abq4722. PubMed DOI PMC

Jiang H., Zhang X., Chen X., Aramsangtienchai P., Tong Z., Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem. Rev. 2018;118:919–988. doi: 10.1021/acs.chemrev.6b00750. PubMed DOI PMC

Sitaram P., Uyemura B., Malarkannan S., Riese M.J. Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int. J. Mol. Sci. 2019;20:5821. doi: 10.3390/ijms20235821. PubMed DOI PMC

Sheng R., Jung D.-J., Silkov A., Kim H., Singaram I., Wang Z.-G., Xin Y., Kim E., Park M.-J., Thiagarajan-Rosenkranz P., et al. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J. Biol. Chem. 2016;291:17639–17650. doi: 10.1074/jbc.M116.720284. PubMed DOI PMC

Kabouridis P.S., Janzen J., Magee A.L., Ley S.C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur. J. Immunol. 2000;30:954–963. doi: 10.1002/1521-4141(200003)30:3<954::AID-IMMU954>3.0.CO;2-Y. PubMed DOI

Tripathi S., Gupta E., Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep. 2024;7:e2078. doi: 10.1002/cnr2.2078. PubMed DOI PMC

Chamani S., Kooshkaki O., Moossavi M., Rastegar M., Soflaei S.S., McCloskey A.P., Banach M., Sahebkar A. The effects of statins on the function and differentiation of blood cells. Arch. Med. Sci. 2022;19:1314–1326. doi: 10.5114/aoms/158546. PubMed DOI PMC

Benjamin D.J., Haslam A., Prasad V. Cardiovascular/anti-inflammatory drugs repurposed for treating or preventing cancer: A systematic review and meta-analysis of randomized trials. Cancer Med. 2024;13:e7049. doi: 10.1002/cam4.7049. PubMed DOI PMC

Mariuzza R.A., Shahid S., Karade S.S. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J. Biol. Chem. 2024;300:107241. doi: 10.1016/j.jbc.2024.107241. PubMed DOI PMC

Nika K., Soldani C., Salek M., Paster W., Gray A., Etzensperger R., Fugger L., Polzella P., Cerundolo V., Dushek O., et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32:766–777. doi: 10.1016/j.immuni.2010.05.011. PubMed DOI PMC

Fernández-Aguilar L.M., Vico-Barranco I., Arbulo-Echevarria M.M., Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. Biology. 2023;12:1163. doi: 10.3390/biology12091163. PubMed DOI PMC

Bozso S.J., Kang J.J.H., Nagendran J. The role of competing mechanisms on Lck regulation. Immunol. Res. 2020;68:289–295. doi: 10.1007/s12026-020-09148-2. PubMed DOI

Kesavan K.P., Isaacson C.C., Ashendel C.L., Geahlen R.L., Harrison M.L. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation. J. Biol. Chem. 2002;277:14666–14673. doi: 10.1074/jbc.M111911200. PubMed DOI

Wu J., Li G., Li L., Li D., Dong Z., Jiang P. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat. Cell Biol. 2021;23:75–86. doi: 10.1038/s41556-020-00615-4. PubMed DOI

Wang Q., Zhu T., Miao N., Qu Y., Wang Z., Chao Y., Wang J., Wu W., Xu X., Xu C., et al. Disulfiram bolsters T-cell anti-tumor immunity through direct activation of LCK-mediated TCR signaling. EMBO J. 2022;41:e110636. doi: 10.15252/embj.2022110636. PubMed DOI PMC

Rheinländer A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol. Lett. 2018;196:22–32. doi: 10.1016/j.imlet.2018.01.009. PubMed DOI

Inderberg E.M., Mensali N., Oksvold M.P., Fallang L.-E., Fåne A., Skorstad G., Stenvik G.-E., Progida C., Bakke O., Kvalheim G., et al. Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunol. Immunother. 2017;67:525–536. doi: 10.1007/s00262-017-2105-9. PubMed DOI PMC

Zhu S., Wang H., Ranjan K., Zhang D. Regulation, targets and functions of CSK. Front. Cell Dev. Biol. 2023;11:1206539. doi: 10.3389/fcell.2023.1206539. PubMed DOI PMC

Hui E., Vale R.D. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Biol. 2014;21:133–142. doi: 10.1038/nsmb.2762. PubMed DOI PMC

Kästle M., Merten C., Hartig R., Kaehne T., Liaunardy-Jopeace A., Woessner N.M., Schamel W.W., James J., Minguet S., Simeoni L., et al. Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56Lck regulates T-cell activation independently of Lck/CD45 interactions. Cell Commun. Signal. 2020;18:183. doi: 10.1186/s12964-020-00673-z. PubMed DOI PMC

Courtney A.H., Amacher J.F., Kadlecek T.A., Mollenauer M.N., Au-Yeung B.B., Kuriyan J., Weiss A. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol. Cell. 2017;67:498–511.e6. doi: 10.1016/j.molcel.2017.06.024. PubMed DOI PMC

Kästle M., Merten C., Hartig R., Plaza-Sirvent C., Schmitz I., Bommhardt U., Schraven B., Simeoni L. Y192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int. J. Mol. Sci. 2022;23:7271. doi: 10.3390/ijms23137271. PubMed DOI PMC

Prakaash D., Fagnen C., Cook G.P., Acuto O., Kalli A.C. Molecular dynamics simulations reveal membrane lipid interactions of the full-length lymphocyte specific kinase (Lck) Sci. Rep. 2022;12:21121. doi: 10.1038/s41598-022-25603-6. PubMed DOI PMC

Brian B.F., Sjaastad F.V., Freedman T.S. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci. Rep. 2022;12:5875. doi: 10.1038/s41598-022-09589-9. PubMed DOI PMC

Okada M. Regulation of the Src Family Kinases by Csk. Int. J. Biol. Sci. 2012;8:1385–1397. doi: 10.7150/ijbs.5141. PubMed DOI PMC

Hur E.M., Son M., Lee O.-H., Choi Y.B., Park C., Lee H., Yun Y. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J. Exp. Med. 2003;198:1463–1473. doi: 10.1084/jem.20030232. PubMed DOI PMC

Ventimiglia L.N., Alonso M.A. The role of membrane rafts in Lck transport, regulation and signalling in T-cells. Biochem. J. 2013;454:169–179. doi: 10.1042/BJ20130468. PubMed DOI

Strazza M., Azoulay-Alfaguter I., Peled M., Adam K., Mor A. Transmembrane adaptor protein PAG is a mediator of PD-1 inhibitory signaling in human T cells. Commun. Biol. 2021;4:672. doi: 10.1038/s42003-021-02225-8. PubMed DOI PMC

Borowicz P., Sundvold V., Chan H., Abrahamsen G., Kjelstrup H., Nyman T.A., Spurkland A. Tyr192 Regulates Lymphocyte-Specific Tyrosine Kinase Activity in T Cells. J. Immunol. 2021;207:1128–1137. doi: 10.4049/jimmunol.2001105. PubMed DOI

Schultz A., Schnurra M., El-Bizri A., Woessner N.M., Hartmann S., Hartig R., Minguet S., Schraven B., Simeoni L. A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells. 2022;11:2723. doi: 10.3390/cells11172723. PubMed DOI PMC

Feng S., Cheng X., Zhang L., Lu X., Chaudhary S., Teng R., Frederickson C., Champion M.M., Zhao R., Cheng L., et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc. Natl. Acad. Sci. USA. 2018;115:10094–10099. doi: 10.1073/pnas.1800695115. PubMed DOI PMC

Mohanasundaram K.A., Haworth N.L., Grover M.P., Crowley T.M., Goscinski A., Wouters M.A. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front. Pharmacol. 2015;6:1. doi: 10.3389/fphar.2015.00001. PubMed DOI PMC

Nakamura K., Hori T., Yodoi J. Alternative binding of p56lck and phosphatidylinositol 3-kinase in T cells by sulfhydryl oxidation: Implication of aberrant signaling due to oxidative stress in T lymphocytes. Mol. Immunol. 1996;33:855–865. doi: 10.1016/0161-5890(96)84611-6. PubMed DOI

Lasser S.A., Kurt F.G.O., Arkhypov I., Utikal J., Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 2024;21:147–164. doi: 10.1038/s41571-023-00846-y. PubMed DOI

Rudd C.E. How the Discovery of the CD4/CD8-p56lck Complexes Changed Immunology and Immunotherapy. Front. Cell Dev. Biol. 2021;9:626095. doi: 10.3389/fcell.2021.626095. PubMed DOI PMC

Liang Y., Ye L. Bound to be perfect: Lck and T cell co-receptors. Nat. Immunol. 2023;24:5–7. doi: 10.1038/s41590-022-01392-y. PubMed DOI

Horkova V., Drobek A., Mueller D., Gubser C., Niederlova V., Wyss L., King C.G., Zehn D., Stepanek O. Dynamics of the Coreceptor-LCK Interactions during T Cell Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. Cell Rep. 2020;30:1504–1514.e7. doi: 10.1016/j.celrep.2020.01.008. PubMed DOI PMC

Qin Z., Hou P., Lin H., Chen M., Wang R., Xu T. Inhibition of Lck/Fyn kinase activity promotes the differentiation of induced Treg cells through AKT/mTOR pathway. Int. Immunopharmacol. 2024;134:112237. doi: 10.1016/j.intimp.2024.112237. PubMed DOI

Le Page A., Dupuis G., Larbi A., Witkowski J.M., Fülöp T. Signal transduction changes in CD4 + and CD8 + T cell subpopulations with aging. Exp. Gerontol. 2018;105:128–139. doi: 10.1016/j.exger.2018.01.005. PubMed DOI

Tedeschi V., Paldino G., Kunkl M., Paroli M., Sorrentino R., Tuosto L., Fiorillo M.T. CD8+ T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int. J. Mol. Sci. 2022;23:3374. doi: 10.3390/ijms23063374. PubMed DOI PMC

Braga F.A.V., Hertoghs K.M.L., van Lier R.A., van Gisbergen K.P.J.M. Molecular characterization of HCMV-specific immune responses: Parallels between CD8+ T cells, CD4+ T cells, and NK cells. Eur. J. Immunol. 2015;45:2433–2445. doi: 10.1002/eji.201545495. PubMed DOI

Esensten J.H., Helou Y.A., Chopra G., Weiss A., Bluestone J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity. 2016;44:973–988. doi: 10.1016/j.immuni.2016.04.020. PubMed DOI PMC

Paprckova D., Niederlova V., Moudra A., Drobek A., Pribikova M., Janusova S., Schober K., Neuwirth A., Michalik J., Huranova M., et al. Self-reactivity of CD8 T-cell clones determines their differentiation status rather than their responsiveness in infections. Front. Immunol. 2022;13:1009198. doi: 10.3389/fimmu.2022.1009198. PubMed DOI PMC

Kwon J., Devadas S., Williams M. T Cell Receptor-Stimulated Generation of Hydrogen Peroxide Inhibits MEK-ERK Activation and Lck Serine Phosphorylation. Free. Radic. Biol. Med. 2003;35:406–417. doi: 10.1016/S0891-5849(03)00318-6. PubMed DOI

Franklin R.A., Atherfold P.A., McCubrey J.A. Calcium-Induced ERK Activation in Human T Lymphocytes Occurs via P56(Lck) and CaM-Kinase. Mol. Immunol. 2000;37:675–683. doi: 10.1016/S0161-5890(00)00087-0. PubMed DOI

Rodriguez-Rodriguez C., González-Mancha N., Ochoa-Echeverría A., Mérida I. Sorting Nexin 27-dependent regulation of Lck and CD4 tunes the initial stages of T-cell activation. J. Leukoc. Biol. 2024:qiae086. doi: 10.1093/jleuko/qiae086. advance online publication . PubMed DOI

Trefny M.P., Kirchhammer N., der Maur P.A., Natoli M., Schmid D., Germann M., Rodriguez L.F., Herzig P., Lötscher J., Akrami M., et al. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat. Commun. 2023;14:86. doi: 10.1038/s41467-022-35583-w. PubMed DOI PMC

Overduin M., Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. Biochim. Biophys. Acta (BBA)-Biomembr. 2024;1866:184305. doi: 10.1016/j.bbamem.2024.184305. PubMed DOI

Rao N., Miyake S., Reddi A.L., Douillard P., Ghosh A.K., Dodge I.L., Zhou P., Fernandes N.D., Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl. Acad. Sci. USA. 2002;99:3794–3799. doi: 10.1073/pnas.062055999. PubMed DOI PMC

Kashiwakura J.I., Oritani K., Matsuda T. The Functional Properties and Physiological Roles of Signal-Transducing Adaptor Protein-2 in the Pathogenesis of Inflammatory and Immune Disorders. Biomedicines. 2022;10:3079. doi: 10.3390/biomedicines10123079. PubMed DOI PMC

Shao Y., Elly C., Liu Y. Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Rep. 2003;4:425–431. doi: 10.1038/sj.embor.embor813. PubMed DOI PMC

Jeon M.-S., Atfield A., Venuprasad K., Krawczyk C., Sarao R., Elly C., Yang C., Arya S., Bachmaier K., Su L., et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity. 2004;21:167–177. doi: 10.1016/j.immuni.2004.07.013. PubMed DOI

Matalon O., Fried S., Ben-Shmuel A., Pauker M.H., Joseph N., Keizer D., Piterburg M., Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal. 2016;9:ra54. doi: 10.1126/scisignal.aad6182. PubMed DOI

Shi Y., Strasser A., Green D.R., Latz E., Mantovani A., Melino G. Legacy of the discovery of the T-cell receptor: 40 years of shaping basic immunology and translational work to develop novel therapies. Cell Mol. Immunol. 2024;21:790–797. doi: 10.1038/s41423-024-01168-4. PubMed DOI PMC

Augustin R.C., Bao R., Luke J.J. Targeting Cbl-b in cancer immunotherapy. J. Immunother. Cancer. 2023;11:e006007. doi: 10.1136/jitc-2022-006007. PubMed DOI PMC

Yu. Cooper, J C.; Shi, M.; Chueh, F.-Y.; Venkitachalam, S.; Yu, C.-L. Enforced SOCS1 and SOCS3 expression attenuates Lck-mediated cellular transformation. Int. J. Oncol. 2010;36:1201–1208. doi: 10.3892/ijo_00000603. PubMed DOI PMC

Shih Y.-C., Chen H.-F., Wu C.-Y., Ciou Y.-R., Wang C.-W., Chuang H.-C., Tan T.-H. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Nat. Commun. 2024;15:532. doi: 10.1038/s41467-024-44843-w. PubMed DOI PMC

Jury E.C., Kabouridis P.S., Abba A., Mageed R.A., Isenberg D.A. Increased ubiquitination and reduced expression of LCK in T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48:1343–1354. doi: 10.1002/art.10978. PubMed DOI

Huang L., Zhu P., Xia P., Fan Z. WASH has a critical role in NK cell cytotoxicity through Lck-mediated phosphorylation. Cell Death Dis. 2016;7:e2301. doi: 10.1038/cddis.2016.212. PubMed DOI PMC

Moore E.K., Strazza M., Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front. Immunol. 2022;13:927265. doi: 10.3389/fimmu.2022.927265. PubMed DOI PMC

Chiang G.G., Sefton B.M. Specific Dephosphorylation of the Lck Tyrosine Protein Kinase at Tyr-394 by the SHP-1 Protein-tyrosine Phosphatase. J. Biol. Chem. 2001;276:23173–23178. doi: 10.1074/jbc.M101219200. PubMed DOI

Baldanzi G. Immune Checkpoint Receptors Signaling in T Cells. Int. J. Mol. Sci. 2022;23:3529. doi: 10.3390/ijms23073529. PubMed DOI PMC

Celis-Gutierrez J., Blattmann P., Zhai Y., Jarmuzynski N., Ruminski K., Grégoire C., Ounoughene Y., Fiore F., Aebersold R., Roncagalli R., et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep. 2019;27:3315–3330.e7. doi: 10.1016/j.celrep.2019.05.041. PubMed DOI PMC

Li K., Yuan Z., Lyu J., Ahn E., Davis S.J., Ahmed R., Zhu C. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat. Commun. 2021;12:2746. doi: 10.1038/s41467-021-22965-9. PubMed DOI PMC

Wang R., He S., Long J., Wang Y., Jiang X., Chen M., Wang J. Emerging therapeutic frontiers in cancer: Insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp. Hematol. Oncol. 2024;13:46. doi: 10.1186/s40164-024-00515-5. PubMed DOI PMC

Chyuan I.-T., Liao H.-J., Tan T.-H., Chuang H.-C., Chu Y.-C., Pan M.-H., Wu C.-S., Chu C.-L., Sheu B.-C., Hsu P.-N. Association of TRAIL receptor with phosphatase SHP-1 enables repressing T cell receptor signaling and T cell activation through inactivating Lck. J. Biomed. Sci. 2024;31:33. doi: 10.1186/s12929-024-01023-8. PubMed DOI PMC

Lai T.-C., Fang C.-Y., Jan Y.-H., Hsieh H.-L., Yang Y.-F., Liu C.-Y., Chang P.M.-H., Hsiao M. Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway. Cell Commun. Signal. 2020;18:164. doi: 10.1186/s12964-020-00600-2. PubMed DOI PMC

Poirier A., Ormonde J.V.S., Aubry I., Abidin B.M., Feng C.-H., Martinez-Cordova Z., Hincapie A.M., Wu C., Pérez-Quintero L.A., Wang C.-L., et al. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci. Signal. 2024;17:eadg4422. doi: 10.1126/scisignal.adg4422. PubMed DOI

Graydon C.G., Mohideen S., Fowke K.R. LAG3’s Enigmatic Mechanism of Action. Front. Immunol. 2021;11:615317. doi: 10.3389/fimmu.2020.615317. PubMed DOI PMC

Guy C., Mitrea D.M., Chou P.-C., Temirov J., Vignali K.M., Liu X., Zhang H., Kriwacki R., Bruchez M.P., Watkins S.C., et al. LAG3 associates with TCR–CD3 complexes and suppresses signaling by driving co-receptor–Lck dissociation. Nat. Immunol. 2022;23:757–767. doi: 10.1038/s41590-022-01176-4. PubMed DOI PMC

Luke J.J., Luke J.J., Patel M.R., Patel M.R., Blumenschein G.R., Blumenschein G.R., Hamilton E., Hamilton E., Chmielowski B., Chmielowski B., et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial. Nat. Med. 2023;29:2814–2824. doi: 10.1038/s41591-023-02593-0. PubMed DOI PMC

Binder C., Cvetkovski F., Sellberg F., Berg S., Visbal H.P., Sachs D.H., Berglund E., Berglund D. CD2 Immunobiology. Front. Immunol. 2020;11:1090. doi: 10.3389/fimmu.2020.01090. PubMed DOI PMC

Nunes R.J., Castro M.A.A., Gonçalves C.M., Bamberger M., Pereira C.F., Bismuth G., Carmo A.M. Protein Interactions between CD2 and Lck Are Required for the Lipid Raft Distribution of CD2. J. Immunol. 2008;180:988–997. doi: 10.4049/jimmunol.180.2.988. PubMed DOI

Burgueño-Bucio E., Mier-Aguilar C.A., Soldevila G. The multiple faces of CD5. J. Leukoc. Biol. 2019;105:891–904. doi: 10.1002/JLB.MR0618-226R. PubMed DOI

Baaten B.J., Li C.-R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010;3:508–512. doi: 10.4161/cib.3.6.13495. PubMed DOI PMC

Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC

Chen C., Zhao S., Karnad A., Freeman J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018;11:64. doi: 10.1186/s13045-018-0605-5. PubMed DOI PMC

Duan H., Jing L., Jiang X., Ma Y., Wang D., Xiang J., Chen X., Wu Z., Yan H., Jia J., et al. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J. Clin. Investig. 2021;131:e148568. doi: 10.1172/JCI148568. PubMed DOI PMC

Raychaudhuri S.K., Abria C., Raychaudhuri S.P. Phenotype and pathological significance of MCAM+ (CD146+) T cell subset in psoriatic arthritis. Mol. Biol. Rep. 2021;48:6787–6796. doi: 10.1007/s11033-021-06678-2. PubMed DOI PMC

Al-Harbi N.O., Ahmad S.F., Almutairi M., Alanazi A.Z., Ibrahim K.E., Alqarni S.A., Alqahtani F., Alhazzani K., Alharbi M., Alasmari F., et al. Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model. Cell. Immunol. 2022;376:104531. doi: 10.1016/j.cellimm.2022.104531. PubMed DOI

McArdel S.L., Terhorst C., Sharpe A.H. Roles of CD48 in regulating immunity and tolerance. Clin. Immunol. 2016;164:10–20. doi: 10.1016/j.clim.2016.01.008. PubMed DOI PMC

Li B., Lu Y., Zhong M.-C., Qian J., Li R., Davidson D., Tang Z., Zhu K., Argenty J., de Peredo A.G., et al. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci. Immunol. 2022;7:eabn6373. doi: 10.1126/sciimmunol.abn6373. PubMed DOI

Bharti R., Dey G., Lin F., Lathia J., Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett. 2022;551:215935. doi: 10.1016/j.canlet.2022.215935. PubMed DOI PMC

Saygin C., Wiechert A., Rao V.S., Alluri R., Connor E., Thiagarajan P.S., Hale J.S., Li Y., Chumakova A., Jarrar A., et al. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J. Exp. Med. 2017;214:2715–2732. doi: 10.1084/jem.20170438. PubMed DOI PMC

Giustiniani J., Bensussan A., Marie-Cardine A. Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J. Immunol. 2009;182:63–71. doi: 10.4049/jimmunol.182.1.63. PubMed DOI PMC

Oumeslakht L., Aziz A.-I., Bensussan A., Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front. Immunol. 2022;13:1028013. doi: 10.3389/fimmu.2022.1028013. PubMed DOI PMC

Zhan F., He L., Yu Y., Chen Q., Guo Y., Wang L. A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer. Sci. Rep. 2023;13:16397. doi: 10.1038/s41598-023-43543-7. PubMed DOI PMC

Wang F., Zheng A., Zhang D., Zou T., Xiao M., Chen J., Wen B., Wen Q., Wu X., Li M., et al. Molecular profiling of core immune-escape genes highlights LCK as an immune-related prognostic biomarker in melanoma. Front. Immunol. 2022;13:1024931. doi: 10.3389/fimmu.2022.1024931. PubMed DOI PMC

Weiße J., Rosemann J., Müller L., Kappler M., Eckert A.W., Glaß M., Misiak D., Hüttelmaier S., Ballhausen W.G., Hatzfeld M., et al. Identification of lymphocyte cell-specific protein-tyrosine kinase (LCK) as a driver for invasion and migration of oral cancer by tumor heterogeneity exploitation. Mol. Cancer. 2021;20:88. doi: 10.1186/s12943-021-01384-w. PubMed DOI PMC

Vahedi S., Chueh F.-Y., Dutta S., Chandran B., Yu C.-L. Nuclear lymphocyte-specific protein tyrosine kinase and its interaction with CR6-interacting factor 1 promote the survival of human leukemic T cells. Oncol. Rep. 2015;34:43–50. doi: 10.3892/or.2015.3990. PubMed DOI PMC

Dey G., Bharti R., Braley C., Alluri R., Esakov E., Crean-Tate K., McCrae K., Joehlin-Price A., Rose P.G., Lathia J., et al. LCK facilitates DNA damage repair by stabilizing RAD51 and BRCA1 in the nucleus of chemoresistant ovarian cancer. J. Ovarian Res. 2023;16:122. doi: 10.1186/s13048-023-01194-2. PubMed DOI PMC

Kumari G., Singhal P., Suryaraja R., Mahalingam S. Functional Interaction of the Ras Effector RASSF5 with the Tyrosine Kinase Lck: Critical Role in Nucleocytoplasmic Transport and Cell Cycle Regulation. J. Mol. Biol. 2010;397:89–109. doi: 10.1016/j.jmb.2010.01.005. PubMed DOI

Huang L., Li H., Zhang C., Chen Q., Liu Z., Zhang J., Luo P., Wei T. Unlocking the potential of T-cell metabolism reprogramming: Advancing single-cell approaches for precision immunotherapy in tumour immunity. Clin. Transl. Med. 2024;14:e1620. doi: 10.1002/ctm2.1620. PubMed DOI PMC

Zhang J., Wu Y.-J., Hu X.-X., Wei W. New insights into the Lck-NF-κB signaling pathway. Front. Cell Dev. Biol. 2023;11:1120747. doi: 10.3389/fcell.2023.1120747. PubMed DOI PMC

Huang Y., Li S., Liu Q., Wang Z., Li S., Liu L., Zhao W., Wang K., Zhang R., Wang L., et al. The LCK-14-3-3ζ-TRPM8 axis regulates TRPM8 function/assembly and promotes pancreatic cancer malignancy. Cell Death Dis. 2022;13:524. doi: 10.1038/s41419-022-04977-5. PubMed DOI PMC

Honikel M.M., Olejniczak S.H. Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules. 2022;12:1303. doi: 10.3390/biom12091303. PubMed DOI PMC

Curio S., Jonsson G., Marinović S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 2021;1:ltab018. doi: 10.1093/immadv/ltab018. PubMed DOI PMC

Czaplicka A., Lachota M., Pączek L., Zagożdżon R., Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence. Cells. 2024;13:101. doi: 10.3390/cells13010101. PubMed DOI PMC

Deng Y., Kumar A., Xie K., Schaaf K., Scifo E., Morsy S., Li T., Ehninger A., Bano D., Ehninger D. Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov. 2024;10:217. doi: 10.1038/s41420-024-01976-7. PubMed DOI PMC

Acharya S., Basar R., Daher M., Rafei H., Li P., Uprety N., Ensley E., Shanley M., Kumar B., Banerjee P.P., et al. CD28 costimulation augments CAR signaling in NK cells via the LCK/CD3Z/ZAP70 signaling axis. Cancer Discov. 2024:1–22. doi: 10.1158/2159-8290.CD-24-0096. PubMed DOI PMC

Wu L., Brzostek J., Vale P.D.S., Wei Q., Koh C.K., Ong J.X.H., Wu L.-Z., Tan J.C., Chua Y.L., Yap J., et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep. Med. 2023;4:100917. doi: 10.1016/j.xcrm.2023.100917. PubMed DOI PMC

Zhang J., Zhang J., Jiang Z., Jiang Z., Zhang X., Zhang X., Yang Z., Yang Z., Wang J., Wang J., et al. THEMIS is a substrate and allosteric activator of SHP1, playing dual roles during T cell development. Nat. Struct. Mol. Biol. 2024;31:54–67. doi: 10.1038/s41594-023-01131-3. PubMed DOI

Goldsmith M.A., Weiss A. Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. Proc. Natl. Acad. Sci. USA. 1987;84:6879–6883. doi: 10.1073/pnas.84.19.6879. PubMed DOI PMC

Oh-Hori N., Koga Y., Yoshida H., Morita M., Kimura G., Nomoto K. Human T-cell leukemia virus type-I-infected T-cell lines scarcely produce p56lck, whether or not they express lck mRNA. Int. J. Cancer. 1990;46:315–319. doi: 10.1002/ijc.2910460229. PubMed DOI

Hauck F., Randriamampita C., Martin E., Gerart S., Lambert N., Lim A., Soulier J., Maciorowski Z., Touzot F., Moshous D., et al. Primary T-Cell Immunodeficiency with Immunodysregulation Caused by Autosomal Recessive LCK Deficiency. J. Allergy Clin. Immunol. 2012;130:1144–1152.e11. doi: 10.1016/j.jaci.2012.07.029. PubMed DOI

Lanz A.-L., Erdem S., Ozcan A., Ceylaner G., Cansever M., Ceylaner S., Conca R., Magg T., Acuto O., Latour S., et al. A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature. J. Clin. Immunol. 2023;44:1. doi: 10.1007/s10875-023-01602-8. PubMed DOI PMC

Lui V.G., Hoenig M., Cabrera-Martinez B., Baxter R.M., Garcia-Perez J.E., Bailey O., Acharya A., Lundquist K., Capera J., Matusewicz P., et al. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J. Exp. Med. 2023;221:e20230927. doi: 10.1084/jem.20230927. PubMed DOI PMC

Guérin A., Moncada-Vélez M., Jackson K., Ogishi M., Rosain J., Mancini M., Langlais D., Nunez A., Webster S., Goyette J., et al. Helper T cell immunity in humans with inherited CD4 deficiency. J. Exp. Med. 2024;221:e20231044. doi: 10.1084/jem.20231044. PubMed DOI PMC

Hulme J.S., Barratt B.J., Twells R.C., Cooper J.D., Lowe C.E., Howson J.M., Lam A.C., Smink L.J., Savage D.A., Undlien D.E., et al. Association Analysis of the Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Gene in Type 1 Diabetes. Diabetes. 2004;53:2479–2482. doi: 10.2337/diabetes.53.9.2479. PubMed DOI

Zhu Q., Wang J., Zhang L., Bian W., Lin M., Xu X., Zhou X. LCK Rs10914542-G Allele Associates with Type 1 Diabetes in Children via T Cell Hyporesponsiveness. Pediatr. Res. 2019;86:311–315. doi: 10.1038/s41390-019-0436-2. PubMed DOI

Han M., Li Y., Guo Y., Zhu W., Jiang J. Integrative and Comprehensive Pan-Cancer Analysis of Lymphocyte-Specific Protein Tyrosine Kinase in Human Tumors. Int. J. Mol. Sci. 2022;23:13998. doi: 10.3390/ijms232213998. PubMed DOI PMC

Bai F., Jin Y., Zhang P., Chen H., Fu Y., Zhang M., Weng Z., Wu K. Bioinformatic profiling of prognosis-related genes in the breast cancer immune microenvironment. Aging. 2019;11:9328–9347. doi: 10.18632/aging.102373. PubMed DOI PMC

Elkamhawy A., Ali E.M.H., Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: A decade review (2011–2021) focussing on structure–activity relationship (SAR) and docking insights. J. Enzym. Inhib. Med. Chem. 2021;36:1572–1600. doi: 10.1080/14756366.2021.1937143. PubMed DOI PMC

Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024;200:107059. doi: 10.1016/j.phrs.2024.107059. PubMed DOI

Musumeci F., Schenone S. Unlocking Potential and Limits of Kinase Inhibitors: The Highway to Enhanced Cancer Targeted Therapy. Pharmaceutics. 2024;16:625. doi: 10.3390/pharmaceutics16050625. PubMed DOI PMC

Chen Y., Zhang K., Tan J., Fan Z., Fu Y., Li X., Liu B., Wang G. Design, synthesis, and pharmacological evaluation of novel benzothiazole derivatives targeting LCK in acute lymphoblastic leukemia. Bioorg. Chem. 2024;144:107–180. doi: 10.1016/j.bioorg.2024.107180. PubMed DOI

Lee K.C., Ouwehand I., Giannini A.L., Thomas N.S., Dibb N.J., Bijlmakers M.J. Lck Is a Key Target of Imatinib and Dasatinib in T-Cell Activation. Leukemia. 2010;24:896–900. doi: 10.1038/leu.2010.11. PubMed DOI

Dasatinib. [(accessed on 13 July 2024)]. Available online: https://go.drugbank.com/drugs/DB01254.

Cheng Y., Ji C., Xu J., Chen R., Guo Y., Bian Q., Shen Z., Zhang B. LCK-SafeScreen-Model: An Advanced Ensemble Machine Learning Approach for Estimating the Binding Affinity between Compounds and LCK Target. Molecules. 2023;28:7382. doi: 10.3390/molecules28217382. PubMed DOI PMC

Schindler C.G., Armbrust T., Gunawan B., Langer C., Füzesi L., Ramadori G. Gastrointestinal stromal tumor (GIST)—Single center experience of prolonged treatment with imatinib. Z. Gastroenterol. 2005;43:267–273. doi: 10.1055/s-2004-813756. PubMed DOI

Schlemmer M., Bauer S., Schütte R., Hartmann J., Bokemeyer C., Hosius C., Reichardt P. Activity and side effects of imatinib in patients with gastrointestinal stromal tumors: Data from a German multicenter trial. Eur. J. Med. Res. 2011;16:206–212. doi: 10.1186/2047-783X-16-5-206. PubMed DOI PMC

Lam T.J.R., Udonwa S.A., Masuda Y., Yeo M.H.X., Ras M.F.b.H., Goh B.K.P. A systematic review and meta-analysis of neoadjuvant imatinib use in locally advanced and metastatic gastrointestinal stromal tumors. World J. Surg. 2024;48:1681–1691. doi: 10.1002/wjs.12210. PubMed DOI

Karim N.A., Ullah A., Wang H., Shoukier M., Pulliam S., Khaled A., Patel N., Morris J.C. A Phase I Study of the Non-Receptor Kinase Inhibitor Bosutinib in Combination with Pemetrexed in Patients with Selected Metastatic Solid Tumors. Curr. Oncol. 2022;29:9461–9473. doi: 10.3390/curroncol29120744. PubMed DOI PMC

Deplanque G., Demarchi M., Hebbar M., Flynn P., Melichar B., Atkins J., Nowara E., Moyé L., Piquemal D., Ritter D., et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann. Oncol. 2015;26:1194–1200. doi: 10.1093/annonc/mdv133. PubMed DOI PMC

Adenis A., Blay J.-Y., Bui-Nguyen B., Bouché O., Bertucci F., Isambert N., Bompas E., Chaigneau L., Domont J., Ray-Coquard I., et al. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: A randomized controlled open-label trial. Ann. Oncol. 2014;25:1762–1769. doi: 10.1093/annonc/mdu237. PubMed DOI PMC

Le Cesne A., Blay J.-Y., Bui B.N., Bouché O., Adenis A., Domont J., Cioffi A., Ray-Coquard I., Lassau N., Bonvalot S., et al. Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST) Eur. J. Cancer. 2010;46:1344–1351. doi: 10.1016/j.ejca.2010.02.014. PubMed DOI

Larkin J., Marais R., Porta N., de Castro D.G., Parsons L., Messiou C., Stamp G., Thompson L., Edmonds K., Sarker S., et al. Nilotinib in KIT-driven advanced melanoma: Results from the phase II single-arm NICAM trial. Cell Rep. Med. 2024;5:101435. doi: 10.1016/j.xcrm.2024.101435. PubMed DOI PMC

Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol.-Res. Pract. 2024;253:154953. doi: 10.1016/j.prp.2023.154953. PubMed DOI

Barnwal A., Das S., Bhattacharyya J. Repurposing Ponatinib as a PD-L1 Inhibitor Revealed by Drug Repurposing Screening and Validation by In Vitro and In Vivo Experiments. ACS Pharmacol. Transl. Sci. 2023;6:281–289. doi: 10.1021/acsptsci.2c00214. PubMed DOI PMC

Li L., Cui Y., Shen J., Dobson H., Sun G. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leuk. Res. 2019;78:12–20. doi: 10.1016/j.leukres.2019.01.006. PubMed DOI

Frumento D., Grossi G., Falesiedi M., Musumeci F., Carbone A., Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int. J. Mol. Sci. 2024;25:1398. doi: 10.3390/ijms25031398. PubMed DOI PMC

Harada D., Isozaki H., Kozuki T., Yokoyama T., Yoshioka H., Bessho A., Hosokawa S., Takata I., Takigawa N., Hotta K., et al. Crizotinib for recurring non-small-cell lung cancer with EML4-ALK fusion genes previously treated with alectinib: A phase II trial. Thorac. Cancer. 2021;12:643–649. doi: 10.1111/1759-7714.13825. PubMed DOI PMC

Camidge D.R., Bang Y.-J., Kwak E.L., Iafrate A.J., Varella-Garcia M., Fox S.B., Riely G.J., Solomon B., Ou S.-H.I., Kim D.-W., et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: Updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–1019. doi: 10.1016/S1470-2045(12)70344-3. PubMed DOI PMC

Cruz B.D., Barbosa M.M., Torres L.L., Azevedo P.S., Silva V.E.A., Godman B., Alvares-Teodoro J. Crizotinib Versus Conventional Chemotherapy in First-Line Treatment for ALK-Positive Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Oncol. Ther. 2021;9:505–524. doi: 10.1007/s40487-021-00155-3. PubMed DOI PMC

Tanaka A., Nishikawa H., Noguchi S., Sugiyama D., Morikawa H., Takeuchi Y., Ha D., Shigeta N., Kitawaki T., Maeda Y., et al. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J. Exp. Med. 2019;217:e20191009. doi: 10.1084/jem.20191009. PubMed DOI PMC

Burchat A., Borhani D.W., Calderwood D.J., Hirst G.C., Li B., Stachlewitz R.F. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorganic Med. Chem. Lett. 2006;16:118–122. doi: 10.1016/j.bmcl.2005.09.039. PubMed DOI

Singh P.K., Kashyap A., Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed. Pharmacother. 2018;108:1565–1571. doi: 10.1016/j.biopha.2018.10.002. PubMed DOI

Kagawa K., Sato S., Koyama K., Imakura T., Murakami K., Yamashita Y., Naito N., Ogawa H., Kawano H., Nishioka Y. The lymphocyte-specific protein tyrosine kinase-specific inhibitor A-770041 attenuates lung fibrosis via the suppression of TGF-β production in regulatory T-cells. PLoS ONE. 2022;17:e0275987. doi: 10.1371/journal.pone.0275987. PubMed DOI PMC

Alqarni S.A., Bineid A., Ahmad S.F., Al-Harbi N.O., Alqahtani F., Ibrahim K.E., Ali N., Nadeem A. Blockade of Tyrosine Kinase, LCK Leads to Reduction in Airway Inflammation through Regulation of Pulmonary Th2/Treg Balance and Oxidative Stress in Cockroach Extract-Induced Mouse Model of Allergic Asthma. Metabolites. 2022;12:793. doi: 10.3390/metabo12090793. PubMed DOI PMC

Carter N.M., Pomerantz J.L. Calcineurin inhibitors target Lck activation in graft-versus-host disease. J. Clin. Investig. 2021;131:e149934. doi: 10.1172/JCI149934. PubMed DOI PMC

Srour M., Alsuliman T., Labreuche J., Bulabois C.-E., Chevallier P., Daguindau E., Forcade E., François S., Guillerm G., Coiteux V., et al. Nilotinib efficacy and safety as salvage treatment following imatinib intolerance and/or inefficacy in steroid refractory chronic graft-versus-host-disease (SR-cGVHD): A prospective, multicenter, phase II study on behalf of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) Bone Marrow Transplant. 2023;58:401–406. doi: 10.1038/s41409-022-01898-x. PubMed DOI

Olivieri A., Mancini G., Olivieri J., Busilacchi E.M., Cimminiello M., Pascale S.P., Nuccorini R., Patriarca F., Corradini P., Bacigalupo A., et al. Nilotinib in steroid-refractory cGVHD: Prospective parallel evaluation of response, according to NIH criteria and exploratory response criteria (GITMO criteria) Bone Marrow Transplant. 2020;55:2077–2086. doi: 10.1038/s41409-020-0902-9. PubMed DOI

Lin C.-T., Hsueh P.-R., Wu S.-J., Yao M., Ko B.-S., Li C.-C., Hsu C.-A., Tang J.-L., Tien H.-F. Repurposing Nilotinib for Cytomegalovirus Infection Prophylaxis after Allogeneic Hematopoietic Stem Cell Transplantation: A Single-Arm, Phase II Trial. Biol. Blood Marrow Transplant. 2018;24:2310–2315. doi: 10.1016/j.bbmt.2018.07.013. PubMed DOI

Martin M.W., Newcomb J., Nunes J.J., McGowan D.C., Armistead D.M., Boucher C., Buchanan J.L., Buckner W., Chai L., Elbaum D., et al. Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of Lck: Synthesis, SAR, and in vivo antiinflammatory activity. J. Med. Chem. 2006;49:4981–4991. doi: 10.1021/jm060435i. PubMed DOI

Zhou F., Yao H., Ma Z., Hu X. Investigating small molecule compounds targeting psoriasis based on cMAP database and molecular dynamics simulation. Ski. Res. Technol. 2023;29:e13301. doi: 10.1111/srt.13301. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...