Electrical remodeling of atrioventricular junction: a study on retrogradely perfused chick embryonic heart
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21J-02-00039
Czech Health Research Council
207029
Charles University Cooperatio
22-05271S
Grantová Agentura České Republiky (GAČR)
Programme EXCELES,ID Project No. LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
PubMed
39028286
PubMed Central
PMC11427115
DOI
10.1152/ajpheart.00115.2024
Knihovny.cz E-zdroje
- Klíčová slova
- Langendorff perfusion, atrioventricular accessory pathway, preexcitation,
- MeSH
- akční potenciály * MeSH
- kuřecí embryo MeSH
- nodus atrioventricularis embryologie patofyziologie MeSH
- perfuze MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Atrioventricular (AV) accessory pathways (APs) provide additional electrical connections between the atria and ventricles, resulting in severe electrical disturbances. It is generally accepted that APs originate in the altered annulus fibrosus maturation in the late prenatal and perinatal period. However, current experimental methods cannot address their development in specific locations around the annulus fibrosus because of the inaccessibility of late fetal hearts for electrophysiological investigation under physiological conditions. In this study, we describe an approach for optical mapping of the retrogradely perfused chick heart in the last third of the incubation period. This system showed stability for electrophysiological measurement for several hours. This feature allowed analysis of the number and functionality of the APs separately in each clinically relevant position. Under physiological conditions, we also recorded the shortening of the AV delay with annulus fibrosus maturation and analyzed ventricular activation patterns after conduction through APs at specific locations. We observed a gradual regression of AP with an area-specific rate (left-sided APs disappeared first). The results also revealed a sudden drop in the number of active APs between embryonic days 16 and 18. Accessory myocardial AV connections were histologically documented in all positions around the annulus fibrosus even after hatching. The fact that no electrically active AP was present at this stage highlights the necessity of electrophysiological evaluation of accessory atrioventricular connections in studying AP formation.NEW & NOTEWORTHY We present the use of retrograde perfusion and optical mapping to investigate, for the first time, the regression of accessory pathways during annulus fibrosus maturation, separately examining each clinically relevant location. The system enables measurements under physiological conditions and demonstrates long-lasting stability compared with other approaches. This study offers applications of the model to investigate electrical and/or functional development in late embryonic development without concern about heart viability.
Zobrazit více v PubMed
Ban JE. Neonatal arrhythmias: diagnosis, treatment, and clinical outcome. Korean J Pediatr 60: 344–352, 2017. doi:10.3345/kjp.2017.60.11.344. PubMed DOI PMC
Chiu SN, Chang CW, Lu CW, Wu MH. Restored cardiac function after successful resynchronization by right anterior and anteroseptal accessory pathway ablation in Wolff-Parkinson-White syndrome associated dilated cardiomyopathy. Int J Cardiol 163: e19–e20, 2013. doi:10.1016/j.ijcard.2012.08.039. PubMed DOI
Klein GJ, Yee R, Sharma AD. Longitudinal electrophysiologic assessment of asymptomatic patients with the Wolff–Parkinson–White electrocardiographs pattern. N Engl J Med 320: 1229–1233, 1989. doi:10.1056/NEJM198905113201901. PubMed DOI
Kwon EN, Carter KA, Kanter RJ. Radiofrequency catheter ablation for dyssynchrony-induced dilated cardiomyopathy in an infant. Congenit Heart Dis 9: E179–E184, 2014. doi:10.1111/chd.12124. PubMed DOI
Li XM, Ge HY, Shi L, Liu XQ, Guo BJ, Li MT, Jiang H, Zhang Y, Liu HJ, Zheng XC, Li AJ, Zhang YY. [Multicenter investigation of the correlation between supraventricular tachycardia and tachycardia-induced cardiomyopathy in children]. Zhonghua Er Ke Za Zhi 55: 668–671, 2017. doi:10.3760/cma.j.issn.0578-1310.2017.09.009. PubMed DOI
Moore JP, Patel PA, Shannon KM, Albers EL, Salerno JC, Stein MA, Stephenson EA, Mohan S, Shah MJ, Asakai H, Pflaumer A, Czosek RJ, Everitt MD, Garnreiter JM, McCanta AC, Papez AL, Escudero C, Sanatani S, Cain NB, Kannankeril PJ, Bratincsak A, Mandapati R, Silva JNA, Knecht KR, Balaji S. Predictors of myocardial recovery in pediatric tachycardia-induced cardiomyopathy. Heart Rhythm 11: 1163–1169, 2014. doi:10.1016/j.hrthm.2014.04.023. PubMed DOI
Goldstein M, Dunnigan A, Milstein S, Benson DW. Bundle branch block during orthodromic reciprocating tachycardia onset in infants. Am J Cardiol 63: 301–306, 1989. doi:10.1016/0002-9149(89)90335-4. PubMed DOI
Kannankeril PJ, Gotteiner NL, Deal BJ, Johnsrude CL, Strasburger JF. Location of accessory connection in infants presenting with supraventricular tachycardia in utero: clinical correlations. Am J Perinatol 20: 115–119, 2003. doi:10.1055/s-2003-40014. PubMed DOI
January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, Ellinor PT, Ezekowitz MD, Field ME, Furie KL, Heidenreich PA, Murray KT, Shea JB, Tracy CM, Yancy CW; Writing Group Members. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 16: e66–e93, 2019. doi:10.1016/j.hrthm.2019.01.024. PubMed DOI
Ko JK, Deal BJ, Strasburger JF, Benson DW. Supraventricular tachycardia mechanisms and their age distribution in pediatric patients. Am J Cardiol 69: 1028–1032, 1992. doi:10.1016/0002-9149(92)90858-v. PubMed DOI
Stasiak A, Niewiadomska-Jarosik K, Kędziora P. Clinical course and treatment of children and adolescents with the preexcitation syndrome - own studies. Dev Period Med 22: 113–122, 2018. doi:10.34763/devperiodmed.20182202.113122. PubMed DOI PMC
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front Physiol 9: 1876, 2018. doi:10.3389/fphys.2018.01876. PubMed DOI PMC
Reckova M, Rosengarten C, deAlmeida A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93: 77–85, 2003. doi:10.1161/01.RES.0000079488.91342.B7. PubMed DOI
Hahurij ND, Gittenberger-De Groot AC, Kolditz DP, Bökenkamp R, Schalij MJ, Poelmann RE, Blom NA. Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation 117: 2850–2858, 2008. doi:10.1161/CIRCULATIONAHA.107.756288. PubMed DOI
Hahurij ND, Kolditz DP, Bökenkamp R, Markwald RR, Schalij MJ, Poelmann RE, Gittenberger-De Groot AC, Blom NA. Accessory atrioventricular myocardial pathways in mouse heart development: substrate for supraventricular tachycardias. Pediatr Res 70: 37–43, 2011. doi:10.1203/PDR.0b013e3182192bfa. PubMed DOI
Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Markwald RR, Schalij MJ, Gittenberger-de Groot AC. Persistence of functional atrioventricular accessory pathways in postseptated embryonic avian hearts. Circulation 115: 17–26, 2007. doi:10.1161/CIRCULATIONAHA.106.658807. PubMed DOI
Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart. Circ Res 95: 21–33, 2004. doi:10.1161/01.RES.0000130529.18016.35. PubMed DOI
Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat Rec (Hoboken) 291: 1187–1199, 2008. doi:10.1002/ar.20738. PubMed DOI
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D. Development of ventricular trabeculae affects electrical conduction in the early endothermic heart. Dev Dyn 253: 78–90, 2024. doi:10.1002/dvdy.552. PubMed DOI
Olejnickova V, Kocka M, Kvasilova A, Kolesova H, Dziacky A, Gidor T, Gidor L, Sankova B, Gregorovicova M, Gourdie RG, Sedmera D. Gap junctional communication via connexin43 between Purkinje fibers and working myocytes explains the epicardial activation pattern in the postnatal mouse left ventricle. Int J Mol Sci 22: 2475, 2021. doi:10.3390/ijms22052475. PubMed DOI PMC
Perjés Á, Kilpiö T, Ulvila J, Magga J, Alakoski T, Szabó Z, Vainio L, Halmetoja E, Vuolteenaho O, Petäjä-Repo U, Szokodi I, Kerkelä R. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol 111: 2, 2015. doi:10.1007/s00395-015-0521-6. PubMed DOI
Itani N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J Physiol 596: 2991–3006, 2018. doi:10.1113/JP274111. PubMed DOI PMC
Lansford R, Rugonyi S. Follow me! A tale of avian heart development with comparisons to mammal heart development. J Cardiovasc Dev Dis 7: 8, 2020. doi:10.3390/jcdd7010008. PubMed DOI PMC
Vicente Steijn R, Sedmera D, Blom NA, Jongbloed M, Kvasilova A, Nanka O. Apoptosis and epicardial contributions act as complementary factors in remodeling of the atrioventricular canal myocardium and atrioventricular conduction patterns in the embryonic chick heart. Dev Dyn 247: 1033–1042, 2018. doi:10.1002/dvdy.24642. PubMed DOI
Tomanek RJ, Hu N, Phan B, Clark EB. Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc Res 41: 663–671, 1999. doi:10.1016/s0008-6363(98)00330-7. PubMed DOI
Sedmera D, Wessels A, Trusk TC, Thompson RP, Hewett KW, Gourdie RG. Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture. Am J Physiol Heart Circ Physiol 291: H1646–H1652, 2006. doi:10.1152/ajpheart.01007.2005. PubMed DOI
Kroese JM, Broekhuizen MLA, Poelmann RE, Mulder PG, Wladimiroff JW. Epinephrine affects hemodynamics of noninnervated normal and all-trans retinoic acid-treated embryonic chick hearts. Fetal Diagn Ther 19: 431–439, 2004. doi:10.1159/000078996. PubMed DOI
Olejnickova V, Sedmera D. What is the optimal light source for optical mapping using voltage- and calcium-sensitive dyes? Physiol Res 69: 599–607, 2020. doi:10.33549/physiolres.934471. PubMed DOI PMC
Cosío FG, Anderson RH, Kuck KH, Becker A, Borggrefe M, Campbell RW, Gaita F, Guiraudon GM, Haïssaguerre M, Rufilanchas JJ, Thiene G, Wellens HJ, Langberg J, Benditt DG, Bharati S, Klein G, Marchlinski F, Saksena S. Living anatomy of the atrioventricular junctions. A guide to electrophysiologic mapping. Circulation 100: e31–e37, 1999. doi:10.1161/01.CIR.100.5.e31. PubMed DOI
Olejnickova V, Novakova M, Provaznik I. Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput 53: 669–678, 2015. doi:10.1007/s11517-015-1270-2. PubMed DOI
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 255: 110919, 2021. doi:10.1016/j.cbpa.2021.110919. PubMed DOI
Garrud TAC, Teulings NEWD, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Tong W, Derks JB, Ozanne SE, Giussani DA. Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB J 37: e22887, 2023. doi:10.1096/fj.202200676RR. PubMed DOI PMC
Hess RM, Niu Y, Garrud TAC, Botting KJ, Ford SG, Giussani DA. Embryonic cardioprotection by hydrogen sulphide: studies of isolated cardiac function and ischaemia-reperfusion injury in the chicken embryo. J Physiol 598: 4197–4208, 2020. doi:10.1113/JP279978. PubMed DOI
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 9: e14775, 2021. doi:10.14814/phy2.14775. PubMed DOI PMC
Skuhrová K, Kvasilová A, Svatůňková J, Sedmera D. Cardiac enlargement in the chick embryo induced by hypothermic incubation is due to a combination of hyperplasia and hypertrophy of cardiomyocytes. Folia Biol (Praha) 65: 36–42, 2019. doi:10.14712/fb2019065010036. PubMed DOI
Naheed ZJ, Strasburger JF, Deal BJ, Benson DW, Gidding SS. Fetal tachycardia: mechanisms and predictors of hydrops fetalis. J Am Coll Cardiol 27: 1736–1740, 1996. doi:10.1016/0735-1097(96)00054-x. PubMed DOI
Orczykowski M, Derejko P, Urbanek P, Bodalski R, Zakrzewska-Koperska J, Bilińska M, Szumowski L. Characteristic features of patients with multiple accessory pathways. Acta Cardiol 72: 404–409, 2017. doi:10.1080/00015385.2017.1307663. PubMed DOI
Jongbloed MR, Wijffels MC, Schalij MJ, Blom NA, Poelmann RE, van der Laarse A, Mentink MM, Wang Z, Fishman GI, Gittenberger-de Groot AC. Development of the right ventricular inflow tract and moderator band. Circ Res 96: 776–783, 2005. doi:10.1161/01.RES.0000162000.03997.65. PubMed DOI
Fernandez E, Siddiquee Z, Shohet RV. Apoptosis and proliferation in the neonatal murine heart. Dev Dyn 221: 302–310, 2001. doi:10.1002/dvdy.1139. PubMed DOI
James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 90: 556–573, 1994.doi:10.1161/01.CIR.90.1.556. PubMed DOI
Bauersfeld U, Pfammatter JP, Jaeggi E. Treatment of supraventricular tachycardias in the new millennium – drugs or radiofrequency catheter ablation? Eur J Pediatr 160: 1–9, 2001. doi:10.1007/PL00008409. PubMed DOI
Peters NS, Rowland E, Bennett JG, Green CR, Anderson RH, Severs NJ. The Wolff-Parkinson-White syndrome: the cellular substrate for conduction in the accessory atrioventricular pathway. Eur Heart J 15: 981–987, 1994. doi:10.1093/oxfordjournals.eurheartj.a060619. PubMed DOI
Aanhaanen WT, Moorman AF, Christoffels VM. Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. Birth Defects Res A Clin Mol Teratol 91: 565–577, 2011. doi:10.1002/bdra.20826. PubMed DOI
Weferling M, Rolf A, Fischer-Rasokat U, Liebetrau C, Renker M, Choi YH, Hamm CW, Dey D, Kim W-K. Epicardial fat volume is associated with preexisting atrioventricular conduction abnormalities and increased pacemaker implantation rate in patients undergoing transcatheter aortic valve implantation. Int J Cardiovasc Imaging 38: 1399–1406, 2022. doi:10.1007/s10554-021-02502-x. PubMed DOI PMC
Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108: 2460–2466, 2003. doi:10.1161/01.CIR.0000099542.57313.C5. PubMed DOI
Kvasilova A, Olejnickova V, Jensen B, Christoffels VM, Kolesova H, Sedmera D, Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. J Exp Biol 223, jeb229278, 2020. doi:10.1242/jeb.229278. PubMed DOI
Spector P. Principles of cardiac electric propagation and their implications for re-entrant arrhythmias. Circ Arrhythm Electrophysiol 6: 655–661, 2013. doi:10.1161/CIRCEP.113.000311. PubMed DOI
Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Hahurij ND, Lie-Venema H, Markwald RR, Poelmann RE, Schalij MJ, Gittenberger-de Groot AC. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 117: 1508–1517, 2008. doi:10.1161/CIRCULATIONAHA.107.726315. PubMed DOI
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 268: 111204, 2022. doi:10.1016/j.cbpa.2022.111204. PubMed DOI
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 377: 20210332, 2022. doi:10.1098/rstb.2021.0332. PubMed DOI PMC
Filatova TS, Abramochkin DV, Shiels HA. Warmer, faster, stronger: Ca2+ cycling in avian myocardium. J Exp Biol 223: jeb228205, 2020. doi:10.1242/jeb.228205. PubMed DOI
Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol 3: 345, 2012. doi:10.3389/fphys.2012.00345. PubMed DOI PMC
Sankova B, Benes J, Krejci E, Dupays L, Theveniau-Ruissy M, Miquerol L, Sedmera D. The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc Res 95: 469–479, 2012. doi:10.1093/cvr/cvs210. PubMed DOI
Darden D, Hsu JC, Tzou WS, von Alvensleben JC, Brooks M, Hoffmayer KS, Brambatti M, Sauer WH, Feld GK, Adler E. Fasciculoventricular and atrioventricular accessory pathways in patients with Danon disease and preexcitation: a multicenter experience. Heart Rhythm 18: 1194–1202, 2021. doi:10.1016/j.hrthm.2021.03.024. PubMed DOI
Drago F, Tamborrino PP, Cazzoli I. Ablation in pediatric patients and in association with congenital heart disease. Card Electrophysiol Clin 12: 583–590, 2020. doi:10.1016/j.ccep.2020.08.006. PubMed DOI
Hornung T, Calder L. Congenitally corrected transposition of the great arteries. Heart 96: 1154–1161, 2010. doi:10.1136/hrt.2008.150532. PubMed DOI
Kelu Bisabu K, Zhao J, Mokrane AE, Segura É, Marsolais M, Grondin S, Naas E, Gagnon J, Cadrin-Tourigny J, Aguilar M, Mongeon FP, Talajic M, Parent L, Tadros R. Novel gain-of-function variant in CACNA1C associated with timothy syndrome, multiple accessory pathways, and noncompaction cardiomyopathy. Circ Genom Precis Med 13: e003123, 2020. doi:10.1161/CIRCGEN.120.003123. PubMed DOI
Minois D, Sellal JM, Magnin I, de Chillou C. Left ventricular diverticulum associated with two concealed atrioventricular accessory pathways. Eur Heart J 42: 1714, 2020. doi:10.1093/eurheartj/ehaa851. PubMed DOI
Montañés ME, Granados MA, Valverde M, Palomino J, Fontenla A, Escribano L. Wolff Parkinson white pattern in Danon disease: when preexcitation is not what it seems. J Electrocardiol 62: 161–164, 2020. doi:10.1016/j.jelectrocard.2020.08.020. PubMed DOI
Peinado R, Merino JL, Ramírez L, Echeverría I. Decremental atriofascicular accessory pathway with bidirectional conduction: delineation of atrial and ventricular insertion by radiofrequency current application. J Cardiovasc Electrophysiol 12: 489–492, 2001. doi:10.1046/j.1540-8167.2001.00489.x. PubMed DOI
Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein JA. Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation 125: 314–323, 2012. doi:10.1161/CIRCULATIONAHA.111.047159. PubMed DOI PMC
High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, Kaestner KH, Pear WS, Epstein JA. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119: 1986–1996, 2009. doi:10.1172/JCI38922. PubMed DOI PMC
Kolarova J, Novakova M, Ronzhina M, Janousek O, Vesely P, Olejnickova V, Provaznik I. Isolated rabbit hearts-databases of EGs and MAP signals. Computing in Cardiology Conference (CinC), 2013. Zaragoza, Spain, 2013, p. 551–554.