What Is the Optimal Light Source for Optical Mapping Using Voltage- and Calcium-Sensitive Dyes?
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32584139
PubMed Central
PMC8549889
DOI
10.33549/physiolres.934471
PII: 934471
Knihovny.cz E-zdroje
- MeSH
- akční potenciály MeSH
- fluorescenční barviva chemie MeSH
- kuřecí embryo MeSH
- myši MeSH
- srdce fyziologie MeSH
- světlo MeSH
- vápník analýza metabolismus MeSH
- zobrazování pomocí barviva citlivého na potenciál metody normy MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva MeSH
- vápník MeSH
Optical mapping is a fluorescence-based physiological method to image spreading of action potential in excitable tissues, such as the heart and central nervous system. Because of the requirements for high speed imaging in low light conditions, highly sensitive high-speed cameras together with an optical system with maximum photon efficiency are required. While the optimization of these two components is relatively straightforward, the choice of the perfect light source is less simple; depending on the other (usually fixed) components, various parameters may acquire different weight in decision-making process. Here we describe the rationale for building an optical mapping setup and consider the relative advantages and disadvantages of three different commonly available light sources: mercury vapor lamp (HBO), xenon lamp (XBO), and light emitting diode (LED). Using the same optical system (fluorescence macroscope) and high-speed camera (Ultima L), we have tested each of the sources for its ability to provide bright and even illumination of the field of view and measured its temporal fluctuations in intensity. Then we used each in the actual optical mapping experiment using isolated, perfused adult mouse heart or chick embryonic heart to determine the actual signal to noise ratio at various acquisition rates. While the LED sources have undergone significant improvements in the recent past, the other alternatives may still surpass them in some parameters, so they may not be the automatic number one choice for every application.
Zobrazit více v PubMed
BERENFELD O, EFIMOV I. Optical Mapping. Card Electrophysiol Clin. 2019;11:495–510. doi: 10.1016/j.ccep.2019.04.004. PubMed DOI
De la ROSA AJ, DOMINGUEZ JN, SEDMERA D, SANKOVA B, HOVE-MADSEN L, FRANCO D, ARANEGA A. Functional suppression of Kcnq1 leads to early sodium channel remodeling and cardiac conduction system dysmorphogenesis. Cardiovasc Res. 2013;98:504–514. doi: 10.1093/cvr/cvt076. PubMed DOI
DILLON S, MORAD M. A new laser scanning system for measuring action potential propagation in the heart. Science. 1981;214:453–456. doi: 10.1126/science.6974891. PubMed DOI
HEWETT KW, NORMAN LW, SEDMERA D, BARKER RJ, JUSTUS C, ZHANG J, KUBALAK SW, GOURDIE RG. Knockout of the neural and heart expressed gene HF-1b results in apical deficits of ventricular structure and activation. Cardiovasc Res. 2005;67:548–560. doi: 10.1016/j.cardiores.2005.04.002. PubMed DOI PMC
HLAVACOVA M, OLEJNICKOVA V, RONZHINA M, STRACINA T, JANOUSEK O, NOVAKOVA M, BABULA P, KOLAROVA J, PROVAZNIK I, PAULOVA H. Tolerance of isolated rabbit hearts to short ischemic periods is affected by increased LV mass fraction. Physiol Res. 2017;66:581–589. doi: 10.33549/physiolres.933333. PubMed DOI
KAMINO K, HIROTA A, FUJII S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature. 1981;290:595–597. doi: 10.1038/290595a0. PubMed DOI
KITTNAR O, RIEDLBAUCHOVA L, ADLA T, SUCHANEK V, TOMIS J, LOZEK M, VALERIANOVA A, HRACHOVINA M, POPKOVA M, VESELKA J, JANOUSEK J, LHOTSKA L. Outcome of resynchronization therapy on superficial and endocardial electrophysiological findings. Physiol Res. 2018;67(Suppl 4):S601–S610. doi: 10.33549/physiolres.934056. PubMed DOI
SALAMA G, CHOI BR, AZOUR G, LAVASANI M, TUMBEV V, SALZBERG BM, PATRICK MJ, ERNST LA, WAGGONER AS. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol. 2005;208:125–140. doi: 10.1007/s00232-005-0826-8. PubMed DOI PMC
SANKOVA B, MACHALEK J, SEDMERA D. Effects of mechanical loading on early conduction system differentiation in the chick. Am J Physiol Heart Circ Physiol. 2010;298:H1571–1576. doi: 10.1152/ajpheart.00721.2009. PubMed DOI
SARRE A, LANGE N, KUCERA P, RADDATZ E. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol. 2005;288:H1611–1619. doi: 10.1152/ajpheart.00942.2004. PubMed DOI
VOSTAREK F, SANKOVA B, SEDMERA D. Studying dynamic events in the developing myocardium. Prog Biophys Mol Biol. 2014;115:261–269. doi: 10.1016/j.pbiomolbio.2014.06.002. PubMed DOI
VOSTAREK F, SVATUNKOVA J, SEDMERA D. Acute temperature effects on function of the chick embryonic heart. Acta Physiol (Oxf) 2016;217:276–286. doi: 10.1111/apha.12691. PubMed DOI
WITKOWSKI FX, CLARK RB, LARSEN TS, MELNIKOV A, GILES WR. Voltage-sensitive dye recordings of electrophysiological activation in a Langendorff-perfused mouse heart. Can J Cardiol. 1997;13:1077–1082. PubMed