Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart

. 2018 ; 9 () : 1876. [epub] 20190108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30670981

Most embryonic ventricular cardiomyocytes are quite uniform, in contrast to the adult heart, where the specialized ventricular conduction system is molecularly and functionally distinct from the working myocardium. We thus hypothesized that the preferential conduction pathway within the embryonic ventricle could be dictated by trabecular geometry. Mouse embryonic hearts of the Nkx2.5:eGFP strain between ED9.5 and ED14.5 were cleared and imaged whole mount by confocal microscopy, and reconstructed in 3D at 3.4 μm isotropic voxel size. The local orientation of the trabeculae, responsible for the anisotropic spreading of the signal, was characterized using spatially homogenized tensors (3 × 3 matrices) calculated from the trabecular skeleton. Activation maps were simulated assuming constant speed of spreading along the trabeculae. The results were compared with experimentally obtained epicardial activation maps generated by optical mapping with a voltage-sensitive dye. Simulated impulse propagation starting from the top of interventricular septum revealed the first epicardial breakthrough at the interventricular grove, similar to experimentally obtained activation maps. Likewise, ectopic activation from the left ventricular base perpendicular to dominant trabecular orientation resulted in isotropic and slower impulse spreading on the ventricular surface in both simulated and experimental conditions. We conclude that in the embryonic pre-septation heart, the geometry of the A-V connections and trabecular network is sufficient to explain impulse propagation and ventricular activation patterns.

Zobrazit více v PubMed

Angst B. D., Khan L. U., Severs N. J., Whitely K., Rothery S., Thompson R. P., et al. . (1997). Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res. 80, 88–94. 10.1161/01.RES.80.1.88 PubMed DOI

Becker D. L., Cook J. E., Davies C. S., Evans W. H., Gourdie R. G. (1998). Expression of major gap junction connexin types in the working myocardium of eight chordates. Cell. Biol. Int. 22, 527–543. 10.1006/cbir.1998.0295 PubMed DOI

Biben C., Weber R., Kesteven S., Stanley E., McDonald L., Elliott D. A., et al. . (2000). Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ. Res. 87, 888–895. 10.1161/01.RES.87.10.888 PubMed DOI

Bordas R. M., Gillow K., Gavaghan G., Rodriguez B., Kay D. (2012). A bidomain model of the ventricular specialized conduction system of the heart. SIAM J. Appl. Math. 72, 1618–1643. 10.1137/11082796X DOI

Buffinton C. M., Faas D., Sedmera D. (2013). Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle. Biomech. Model Mechanobiol. 12, 1037–1051 10.1007/s10237-012-0461-0 PubMed DOI PMC

Captur G., Wilson R., Bennett M. F., Luxan G., Nasis A., de la Pompa J. L., et al. . (2016). Morphogenesis of myocardial trabeculae in the mouse embryo. J. Anat. 229, 314–325. 10.1111/joa.12465 PubMed DOI PMC

Chen F., De Diego C., Chang M. G., McHarg J. L., John S., Klitzner T. S., et al. . (2010). Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts. Dev. Dyn. 239, 1941–1949. 10.1002/dvdy.22319 PubMed DOI PMC

Clayton R. H., Bernus O., Cherry E. M., Dierckx H., Fenton F. H., Mirabella L., et al. . (2011). Models of cardiac tissue electrophysiology, progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104, 22–48. 10.1016/j.pbiomolbio.2010.05.008 PubMed DOI

Coppen S. R., Kaba R. A., Halliday D., Dupont E., Skepper J. N., Elneil S., et al. . (2003). Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol. Cell. Biochem. 242, 121–127. 10.1023/A:1021150014764 PubMed DOI

Davies F., Francis E. T., King T. S. (1952). The conducting (connecting) system of the crocodilian heart. J. Anat. 86, 152–161. PubMed PMC

de Jong F., Geerts W. J., Lamers W. H., Los J. A., Moorman A. F. (1987). Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat. Embryol. 177, 81–90. 10.1007/BF00325291 PubMed DOI

de Jong F., Opthof T., Wilde A. A., Janse M. J., Charles R., Lamers W. H., et al. . (1992). Persisting zones of slow impulse conduction in developing chicken hearts. Circ. Res. 71, 240–250. 10.1161/01.RES.71.2.240 PubMed DOI

de la Rosa A. J., Dominguez J. N., Sedmera D., Sankova B., Hove-Madsen L., Franco D., et al. . (2013). Functional suppression of Kcnq1 leads to early sodium channel remodeling and cardiac conduction system dysmorphogenesis. Cardiovasc. Res. 98, 504–514. 10.1093/cvr/cvt076 PubMed DOI

Dijkstra E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik. 1, 269–271. 10.1007/BF01386390 DOI

Dupays L., Jarry-Guichard T., Mazurais D., Calmels T., Izumo S., Gros D., et al. . (2005). Dysregulation of connexins and inactivation of NFATc1 in the cardiovascular system of Nkx2-5 null mutants. J. Mol. Cell Cardiol. 38, 787–798. 10.1016/j.yjmcc.2005.02.021 PubMed DOI

Dusek J., Ostádal B., Duskova M. (1975). Postnatal persistence of spongy myocardium with embryonic blood supply. Arch. Pathol. 99, 312–317. PubMed

Ezzeddine F. M., Dandamudi G. (2018). His bundle pacing: is it ready for prime time? Card Electrophysiol. Clin. 10, 87–98. 10.1016/j.ccep.2017.11.009 PubMed DOI

Franco D., Icardo J. M. (2001). Molecular characterization of the ventricular conduction system in the developing mouse heart: topographical correlation in normal and congenitally malformed hearts. Cardiovasc. Res. 49, 417–429. 10.1016/S0008-6363(00)00252-2 PubMed DOI

Franco D., Lamers W. H., Moorman A. F. (1998). Patterns of expression in the developing myocardium: toward a morphologically integrated transcriptional model. Cardiovasc. Res. 38, 25–53. 10.1016/S0008-6363(97)00321-0 PubMed DOI

Gourdie R. G., Green C. R., Severs N. J., Anderson R. H., Thompson R. P. (1993). Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ. Res. 72, 278–289. 10.1161/01.RES.72.2.278 PubMed DOI

Gregorovicova M., Sedmera D., Jensen B. (2018). Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles. J Exp Biol. 221:jeb178400. 10.1242/jeb.178400 PubMed DOI

Greiner J., Sankarankutty A. C., Seemann G., Seidel T., Sachse F. B. (2018). Confocal microscopy-based estimation of parameters for computational modeling of electrical conduction in the normal and infarcted heart. Front. Physiol. 9:239. 10.3389/fphys.2018.00239 PubMed DOI PMC

Harris B. S., Spruill L., Edmonson A. M., Rackley M. S., Benson D. W., O'Brien T. X., et al. . (2006). Differentiation of cardiac Purkinje fibers requires precise spatiotemporal regulation of Nkx2-5 expression. Dev. Dyn. 235, 38–49. 10.1002/dvdy.20580 PubMed DOI PMC

Hutchins G. M., Bulkley B. H., Moore G. W., Piasio M. A., Lohr F. T. (1978). Shape of the human cardiac ventricles. Am. J. Cardiol. 41, 646–654. 10.1016/0002-9149(78)90812-3 PubMed DOI

Jay P. Y., Harris B. S., Maguire C. T., Buerger A., Wakimoto H., Tanaka M., et al. . (2004). Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J. Clin. Invest. 113, 1130–1137. 10.1172/JCI19846 PubMed DOI PMC

Jensen B., Boukens B. J., Crossley D. A., Conner J., Mohan R. A., van Duijvenboden K., Postma A. V., et al. . (2018). Specialized impulse conduction pathway in the alligator heart. Elife 7:e32120 10.7554/eLife.32120 PubMed DOI PMC

Jensen B., Boukens B. J. D., Postma A. V., Gunst Q. D., van den Hoff M. J. B., Moorman A. F. M., et al. . (2012). Identifying the evolutionary building blocks of the cardiac conduction system. PLoS One 7:e44231. 10.1371/journal.pone.0044231 PubMed DOI PMC

Keener J., Sneyd J. (2009). Mathematical Physiology. NewYork, NY: Springer; 1148.

Kolesova H., Capek M., Radochova B., Janacek J., Sedmera D. (2016). Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell. Biol. 146, 141–152. 10.1007/s00418-016-1441-8 PubMed DOI

Kucera J. P., Kleber A. G., Rohr S. (1998). Slow conduction in cardiac tissue, II: effects of branching tissue geometry. Circ. Res. 83, 795–805. 10.1161/01.RES.83.8.795 PubMed DOI

Lopez-Perez A., Sebastian R., Ferrero J. M. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. Biomed. Eng. Online 14:35. 10.1186/s12938-015-0033-5 PubMed DOI PMC

Lyons I., Parsons L. M., Hartley L., Li R., Andrews J. E., Robb L., et al. . (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654–1666. 10.1101/gad.9.13.1654 PubMed DOI

Miller C. E., Thompson R. P., Bigelow M. R., Gittinger G., Trusk T. C., Sedmera D. (2005). Confocal imaging of the embryonic heart: how deep? Microscop. Microanal. 11, 216–223. 10.1017/S1431927605050464 PubMed DOI

Minot C. S. (1901). On a hitherto unrecognised circulation without capillaries in the organs of Vertebrata. Proc. Boston. Soc. Nat. Hist. 29, 185–215. PubMed PMC

Miquerol L., Meysen S., Mangoni M., Bois P., van Rijen H. V., Abran P., et al. . (2004). Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc. Res. 63, 77–86. 10.1016/j.cardiores.2004.03.007 PubMed DOI

Mommersteeg M. T., Hoogaars W. M., Prall O. W., de Gier-de Vries C., Wiese C., Clout D. E., et al. . (2007). Molecular pathway for the localized formation of the sinoatrial node. Circ. Res. 100, 354–362. 10.1161/01.RES.0000258019.74591.b3 PubMed DOI

Moorman A. F., van den Berg G., Anderson R. H., Christoffels V. M. (2010). Early cardiac growth and the ballooning model of cardiac chamber formation, in Heart Development and Regeneration, eds Rosenthal N., Harvey R. P. (London: Elsevier; ). 219–236.

Oosthoek P. W., Viragh S., Lamers W. H., Moorman A. F. (1993). Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ. Res. 73, 482–491. 10.1161/01.RES.73.3.482 PubMed DOI

Palagyi K., Kuba A. (1998). A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn. Lett. 19, 613–627. 10.1016/S0167-8655(98)00031-2 DOI

Park D. S., Fishman G. I. (2017). Development and function of the cardiac conduction system in health and disease. J. Cardiov. Dev. Dis. 4:7. 10.3390/jcdd4020007 PubMed DOI PMC

Plank G., Burton R. A., Hales P., Bishop M., Mansoori T., Bernabeu M. O., et al. . (2009). Generation of histo-anatomically representative models of the individual heart: tools and application. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2257–2292. 10.1098/rsta.2009.0056 PubMed DOI PMC

Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. (1988). Numerical Recipes in C: the Art of Scientific Computing. New York, NY: Cambridge University Press.

Reckova M., Rosengarten C., deAlmeida A., Stanley C. P., Wessels A., Gourdie R. G., et al. . (2003). Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ. Res. 93, 77–85. 10.1161/01.RES.0000079488.91342.B7 PubMed DOI

Rentschler S., Vaidya D. M., Tamaddon H., Degenhardt K., Sassoon D., Morley G. E., et al. . (2001). Visualization and functional characterization of the developing murine cardiac conduction system. Development 128, 1785–1792. PubMed PMC

Rychter Z., Rychterova V. (1981). Angio- and myoarchitecture of the heart wall under normal and experimentally changed morphogenesis, in Perspectives in Cardiovascular Research, ed Pexieder T. (NewYork, NY: Raven Press; ). 431–452.

Ryu S., Yamamoto S., Andersen C. R., Nakazawa K., Miyake F., James T. N. (2009). Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat. Rec. 292, 12–22. 10.1002/ar.20827 PubMed DOI

Sankova B., Benes J., Jr., Krejci E., Dupays L., Theveniau-Ruissy M., Miquerol L., et al. . (2012). The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc. Res. 95, 469–479. 10.1093/cvr/cvs210 PubMed DOI

Sedmera D. (2011). Function and form in the developing cardiovascular system. Cardiovasc. Res. 91, 252–259. 10.1093/cvr/cvr062 PubMed DOI

Sedmera D., Gourdie R. G. (2014). Why do we have Purkinje fibers deep in our heart? Physiol. Res. 63 (Suppl. 1), S9–18. PubMed

Sedmera D., Pexieder T., Hu N., Clark E. B. (1997). Developmental changes in the myocardial architecture of the chick. Anat. Rec. 248, 421–432. 10.1002/(SICI)1097-0185(199707)248:3<421::AID-AR15>3.0.CO;2-R PubMed DOI

Sedmera D., Pexieder T., Hu N., Clark E. B. (1998). A quantitative study of the ventricular myoarchitecture in the stage 21- 29 chick embryo following decreased loading. Eur. J. Morphol. 36, 105–119. 10.1076/ejom.36.2.105.4775 PubMed DOI

Sedmera D., Pexieder T., Vuillemin M., Thompson R. P., Anderson R. H. (2000). Developmental patterning of the myocardium. Anat. Rec. 258, 319–337. PubMed

Sedmera D., Reckova M., Bigelow M. R., DeAlmeida A., Stanley C. P., Mikawa T., et al. (2004). Developmental transitions in electrical activation patterns in chick embryonic heart. Anat. Rec. 280A, 1001–1009. 10.1002/ar.a.20107 PubMed DOI

Sedmera D., Reckova M., DeAlmeida A., Coppen S. R., Kubalak S. W., Gourdie R. G., et al. (2003a). Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat. Rec. 274A, 773–777. 10.1002/ar.a.10085 PubMed DOI

Sedmera D., Reckova M., DeAlmeida A., Sedmerova M., Biermann M., Volejnik J., et al. . (2003b). Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am. J. Physiol. Heart Circ. Physiol. 284, H1152–H1160. 10.1152/ajpheart.00870.2002 PubMed DOI

Sedmera D., Reckova M., Rosengarten C., Torres M. I., Gourdie R. G., Thompson R. P. (2005). Optical mapping of electrical activation in developing heart. Microscop. Microanal. 11, 209–215. 10.1017/S1431927605050452 PubMed DOI

Sedmera D., Thomas P. S. (1996). Trabeculation in the embryonic heart [letter]. Bioessays 18:607. 10.1002/bies.950180714 PubMed DOI

Taber L. A. (2001). Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3, 1–25. 10.1146/annurev.bioeng.3.1.1 PubMed DOI

Taber L. A., Hu N., Pexieder T., Clark E. B., Keller B. B. (1993). Residual strain in the ventricle of the stage 16–24 chick embryo. Circ. Res. 72, 455–462. 10.1161/01.RES.72.2.455 PubMed DOI

van Kempen M. J., Ten Velde I., Wessels A., Oosthoek P. W., Gros D., Jongsma H. J., et al. . (1995). Differential connexin distribution accommodates cardiac function in different species. Microsc. Res. Tech. 31, 420–436. 10.1002/jemt.1070310511 PubMed DOI

Van Kempen M. J., Vermeulen J. L., Moorman A. F., Gros D., Paul D. L., Lamers W. H. (1996). Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc. Res. 32, 886–900. 10.1016/S0008-6363(96)00131-9 PubMed DOI

van Weerd J. H., Christoffels V. M. (2016). The formation and function of the cardiac conduction system. Development 143, 197–210. 10.1242/dev.124883 PubMed DOI

Vostarek F., Sankova B., Sedmera D. (2014). Studying dynamic events in the developing myocardium. Prog. Biophys. Mol. Biol. 115, 261–269. 10.1016/j.pbiomolbio.2014.06.002 PubMed DOI

Vuillemin M., Pexieder T. (1989). Normal stages of cardiac organogenesis in the mouse, II. Development of the internal relief of the heart. Am. J. Anat. 184, 114–128. 10.1002/aja.1001840203 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...