Mathematical Models of Diffusion in Physiology
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38647169
PubMed Central
PMC11412344
DOI
10.33549/physiolres.935292
PII: 935292
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- difuze MeSH
- fyziologické jevy * MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.
Zobrazit více v PubMed
Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;17:549–560. doi: 10.1002/andp.19053220806. DOI
Janáček J, Brejchová J, Svoboda P. Determination of delta-opioid receptor molecules mobility in living cells plasma membrane by novel method of FRAP analysis. Biochim Biophys Acta Biomembr. 2019;1861:1346–1354. doi: 10.1016/j.bbamem.2019.04.012. PubMed DOI
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front Physiol. 2019;9:1876. doi: 10.3389/fphys.2018.01876. PubMed DOI PMC
Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science. 2017;355:606–612. doi: 10.1126/science.aak9913. PubMed DOI
Koppel DE, Axelrod D, Schlessinger J, Elson E, Webb WW. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976;16:1315–1329. doi: 10.1016/S0006-3495(76)85776-1. PubMed DOI PMC
Planes N, Vanderheyden PPML, Gratton E, Caballero-George C. Image mean square displacement to study the lateral mobility of Angiotensin II type 1 and Endothelin 1 type A receptors on living cells. Microsc Res Tech. 2020;83:381–392. doi: 10.1002/jemt.23425. PubMed DOI
Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurements by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16:1055–1069. doi: 10.1016/S0006-3495(76)85755-4. PubMed DOI PMC
Weyl H. Das asymptotische Verteilungsgesetzt der Eigenverte linearer partieller Differentiealgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) Math Ann. 1912;71:441–479. doi: 10.1007/BF01456804. DOI
Kac M. Can one hear the shape of a drum? Am Math Month. 1966;73(4/2):1–23. doi: 10.1080/00029890.1966.11970915. DOI
Alexander S, Orbach R. Density of states on fractals: fractons. J Phys Lett. 1982;43:625–631. doi: 10.1051/jphyslet:019820043017062500. DOI
Crank J. The Mathematics of Diffusion. Clarendon Press; 1956.
Abramowitz M, Stegun I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. United States Department of Commerce, National Bureau of Standards; 1964.
Loren N, Hagman J, Jonasson JK, Deschout H, Bernin D, Cella-Zanacchi F, Diaspro A, McNally JG, Ameloot M, Smisdom N, Nyden M, Hermansson AM, Rudemo M, Braeckmans K. Fluorescence recovery after photo-bleaching in material and life sciences: putting theory into practice. Q Rev Biophys. 2015;48:323–387. doi: 10.1017/S0033583515000013. PubMed DOI
Mazza D, Cella F, Vicidomini G, Krol S, Diaspro A. Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Appl Opt. 2007;46:7401–7411. doi: 10.1364/AO.46.007401. PubMed DOI
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D. LAPACK Users’ Guide. Third ed. Philadelphia: Society for Industrial and Applied Mathematics; 1999. DOI
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C: the art of scientific computing. Second ed. Cambridge, New York: Cambridge University Press; 1992.
Meyer HV, Dawes TJW, Serrani M, Bai W, Tokarczuk P, Cai J, de Marvao A, Henry A, Lumbers RT, Gierten J, Thumberger T, Wittbrodt J, Ware JS, Rueckert D, Matthews PM, Prasad SK, Costantino ML, Cook SA, Birney E, O’Regan DP. Genetic and functional insights into the fractal structure of the heart. Nature. 2020;584:589–594. doi: 10.1038/s41586-020-2635-8. PubMed DOI PMC