Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39435333
PubMed Central
PMC11491540
DOI
10.3389/fcell.2024.1471751
PII: 1471751
Knihovny.cz E-zdroje
- Klíčová slova
- ROCK, cardiomyocyte proliferation, compaction, conduction, mouse embryonic heart, myocardial trabeculae, ventricular wall,
- Publikační typ
- časopisecké články MeSH
Left ventricular noncompaction cardiomyopathy is associated with heart failure, arrhythmia, and sudden cardiac death. The developmental mechanism underpinning noncompaction in the adult heart is still not fully understood, with lack of trabeculae compaction, hypertrabeculation, and loss of proliferation cited as possible causes. To study this, we utilised a mouse model of aberrant Rho kinase (ROCK) signalling in cardiomyocytes, which led to a noncompaction phenotype during embryogenesis, and monitored how this progressed after birth and into adulthood. The cause of the early noncompaction at E15.5 was attributed to a decrease in proliferation in the developing ventricular wall. By E18.5, the phenotype became patchy, with regions of noncompaction interspersed with thick compacted areas of ventricular wall. To study how this altered myoarchitecture of the heart influenced impulse propagation in the developing and adult heart, we used histology with immunohistochemistry for gap junction protein expression, optical mapping, and electrocardiography. At the prenatal stages, a clear reduction in left ventricular wall thickness, accompanied by abnormal conduction of the ectopically paced beat in that area, was observed in mutant hearts. This correlated with increased expression of connexin-40 and connexin-43 in noncompacted trabeculae. In postnatal stages, left ventricular noncompaction was resolved, but the right ventricular wall remained structurally abnormal through to adulthood with cardiomyocyte hypertrophy and retention of myocardial crypts. Thus, this is a novel model of self-correcting embryonic hypertrabeculation cardiomyopathy, but it highlights that remodelling potential differs between the left and right ventricles. We conclude that disruption of ROCK signalling induces both morphological and electrophysiological changes that evolve over time, highlighting the link between myocyte proliferation and noncompaction phenotypes and electrophysiological differentiation.
Biosciences Institute Newcastle University Newcastle upon Tyne United Kingdom
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czechia
Institute of Dental Medicine 1st Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Akar F. G., Spragg D. D., Tunin R. S., Kass D. A., Tomaselli G. F. (2004). Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95 (7), 717–725. 10.1161/01.RES.0000144125.61927.1c PubMed DOI
Amano M., Chihara K., Nakamura N., Fukata Y., Yano T., Shibata M., et al. (1998). Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells. 3 (3), 177–188. 10.1046/j.1365-2443.1998.00181.x PubMed DOI
Amano M., Chihara K., Nakamura N., Kaneko T., Matsuura Y., Kaibuchi K. (1999). The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274 (45), 32418–32424. 10.1074/jbc.274.45.32418 PubMed DOI
Andelova K., Egan Benova T., Szeiffova Bacova B., Sykora M., Prado N. J., Diez E. R., et al. (2021). Cardiac connexin-43 hemichannels and Pannexin1 channels: provocative antiarrhythmic targets. Int. J. Mol. Sci. 22 (1), 260. 10.3390/ijms22010260 PubMed DOI PMC
Anderson S. C., Stone C., Tkach L., SundarRaj N. (2002). Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol. Vis. Sci. 43 (4), 978–986. PubMed
Benes J., Jr., Ammirabile G., Sankova B., Campione M., Krejci E., Kvasilova A., et al. (2014). The role of connexin40 in developing atrial conduction. FEBS Lett. 588, 1465–1469. 10.1016/j.febslet.2014.01.032 PubMed DOI
Benes J., Jr., Melenovsky V., Skaroupkova P., Pospisilova J., Petrak J., Cervenka L., et al. (2011). Myocardial morphological characteristics and proarrhythmic substrate in the rat model of heart failure due to chronic volume overload. Anat. Rec. Hob. 294, 102–111. 10.1002/ar.21280 PubMed DOI
Bohuslavova R., Cerychova R., Papousek F., Olejnickova V., Bartos M., Gorlach A., et al. (2019). HIF-1α is required for development of the sympathetic nervous system. Proc. Natl. Acad. Sci. U. S. A. 116 (27), 13414–13423. 10.1073/pnas.1903510116 PubMed DOI PMC
Boulaksil M., Winckels S. K., Engelen M. A., Stein M., van Veen T. A., Jansen J. A., et al. (2010). Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur. J. Heart Fail 12 (9), 913–921. 10.1093/eurjhf/hfq092 PubMed DOI
Cahill T. J., Ashrafian H., Watkins H. (2013). Genetic cardiomyopathies causing heart failure. Circ. Res. 113 (6), 660–675. 10.1161/CIRCRESAHA.113.300282 PubMed DOI
Cao F., Yang Z., Yin L. (2019). A fetal mouse model of ventricular non-compaction using retinoic acid. Pathol. Res. Pract. 215 (8), 152496. 10.1016/j.prp.2019.152496 PubMed DOI
Captur G., Ho C. Y., Schlossarek S., Kerwin J., Mirabel M., Wilson R., et al. (2016). The embryological basis of subclinical hypertrophic cardiomyopathy. Sci. Rep. 6, 27714. 10.1038/srep27714 PubMed DOI PMC
Captur G., Lopes L. R., Patel V., Li C., Bassett P., Syrris P., et al. (2014). Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ. Cardiovasc Genet. 7 (3), 241–248. 10.1161/CIRCGENETICS.113.000362 PubMed DOI
Coppen S. R., Kaba R. A., Halliday D., Dupont E., Skepper J. N., Elneil S., et al. (2003). Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol. Cell Biochem. 242, 121–127. 10.1007/978-1-4757-4712-6_16 PubMed DOI
de la Rosa A. J., Dominguez J. N., Sedmera D., Sankova B., Hove-Madsen L., Franco D., et al. (2013). Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis. Cardiovasc Res. 98 (3), 504–514. 10.1093/cvr/cvt076 PubMed DOI
Deva D. P., Williams L. K., Care M., Siminovitch K. A., Moshonov H., Wintersperger B. J., et al. (2013). Deep basal inferoseptal crypts occur more commonly in patients with hypertrophic cardiomyopathy due to disease-causing myofilament mutations. Radiology 269 (1), 68–76. 10.1148/radiol.13122344 PubMed DOI
Dupont E., Matsushita T., Kaba R. A., Vozzi C., Coppen S. R., Khan N., et al. (2001). Altered connexin expression in human congestive heart failure. J. Mol. Cell Cardiol. 33 (2), 359–371. 10.1006/jmcc.2000.1308 PubMed DOI
Dusek J., Ostadal B., Duskova M. (1975). Postnatal persistence of spongy myocardium with embryonic blood supply. Arch. Pathol. 99 (6), 312–317. PubMed
Ellawindy A., Satoh K., Sunamura S., Kikuchi N., Suzuki K., Minami T., et al. (2015). Rho-kinase inhibition during early cardiac development causes arrhythmogenic right ventricular cardiomyopathy in mice. Arterioscler. Thromb. Vasc. Biol. 35 (10), 2172–2184. 10.1161/ATVBAHA.115.305872 PubMed DOI
Faber J. W., D'Silva A., Christoffels V. M., Jensen B. (2021a). Lack of morphometric evidence for ventricular compaction in humans. J. Cardiol. 78 (5), 397–405. 10.1016/j.jjcc.2021.03.006 PubMed DOI
Faber J. W., Hagoort J., Moorman A. F. M., Christoffels V. M., Jensen B. (2021b). Quantified growth of the human embryonic heart. Biol. Open 10 (2), bio057059. 10.1242/bio.057059 PubMed DOI PMC
Franco D., Icardo J. M. (2001). Molecular characterization of the ventricular conduction system in the developing mouse heart: topographical correlation in normal and congenitally malformed hearts. Cardiovasc. Res. 49 (2), 417–429. 10.1016/s0008-6363(00)00252-2 PubMed DOI
Franco D., Lamers W. H., Moorman A. F. (1998). Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc. Res. 38 (1), 25–53. 10.1016/s0008-6363(97)00321-0 PubMed DOI
Handa B. S., Li X., Baxan N., Roney C. H., Shchendrygina A., Mansfield C. A., et al. (2021). Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc Res. 117 (4), 1078–1090. 10.1093/cvr/cvaa141 PubMed DOI PMC
Ikeda S., Satoh K., Kikuchi N., Miyata S., Suzuki K., Omura J., et al. (2014). Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler. Thromb. Vasc. Biol. 34 (6), 1260–1271. 10.1161/ATVBAHA.114.303320 PubMed DOI
Jenni R., Oechslin E., Schneider J., Jost C. A., Kaufmann P. A. (2001). Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86 (6), 666–671. 10.1136/heart.86.6.666 PubMed DOI PMC
Jensen B., Chang Y. H., Bamforth S. D., Mohun T., Sedmera D., Bartos M., et al. (2024). The changing morphology of the ventricular walls of mouse and human with increasing gestation. J. Anat. 244, 1040–1053. 10.1111/joa.14017 PubMed DOI PMC
Jiao K., Kulessa H., Tompkins K., Zhou Y., Batts L., Baldwin H. S., et al. (2003). An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17 (19), 2362–2367. 10.1101/gad.1124803 PubMed DOI PMC
Kelder T. P., Vicente-Steijn R., Poelmann R. E., Schalij M. J., Deruiter M. C., Jongbloed M. R. M., et al. (2019). Disruption of RHOA-ROCK signaling results in atrioventricular block and disturbed development of the putative atrioventricular node. Anat. Rec. Hob. 302 (1), 83–92. 10.1002/ar.23912 PubMed DOI
Kobayashi K., Masuda T., Takahashi M., Miyazaki J., Nakagawa M., Uchigashima M., et al. (2011). Rho/Rho-kinase signaling pathway controls axon patterning of a specified subset of cranial motor neurons. Eur. J. Neurosci. 33 (4), 612–621. 10.1111/j.1460-9568.2010.07554.x PubMed DOI
Kobayashi K., Takahashi M., Matsushita N., Miyazaki J., Koike M., Yaginuma H., et al. (2004). Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinase. J. Neurosci. 24 (14), 3480–3488. 10.1523/JNEUROSCI.0295-04.2004 PubMed DOI PMC
Kostin S., Rieger M., Dammer S., Hein S., Richter M., Klovekorn W. P., et al. (2003). Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol. Cell Biochem. 242 (1-2), 135–144. 10.1007/978-1-4757-4712-6_18 PubMed DOI
Krejci E., Pesevski Z., Nanka O., Sedmera D. (2016). Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system. Physiol. Res. 65 (3), 425–435. 10.33549/physiolres.933216 PubMed DOI
Kucera J. P., Kleber A. G., Rohr S. (1998). Slow conduction in cardiac tissue, II: effects of branching tissue geometry. Circ. Res. 83 (8), 795–805. 10.1161/01.res.83.8.795 PubMed DOI
Kumper S., Mardakheh F. K., McCarthy A., Yeo M., Stamp G. W., Paul A., et al. (2016). Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife 5, e12994. 10.7554/eLife.12203 PubMed DOI PMC
Luxan G., Casanova J. C., Martinez-Poveda B., Prados B., D'Amato G., MacGrogan D., et al. (2013). Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19 (2), 193–201. 10.1038/nm.3046 PubMed DOI
Merki E., Zamora M., Raya A., Kawakami Y., Wang J., Zhang X., et al. (2005). Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci. U. S. A. 102 (51), 18455–18460. 10.1073/pnas.0504343102 PubMed DOI PMC
Miquerol L., Meysen S., Mangoni M., Bois P., van Rijen H. V., Abran P., et al. (2004). Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. 63 (1), 77–86. 10.1016/j.cardiores.2004.03.007 PubMed DOI
Okamoto R., Li Y., Noma K., Hiroi Y., Liu P. Y., Taniguchi M., et al. (2013). FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J. 27 (4), 1439–1449. 10.1096/fj.12-217018 PubMed DOI PMC
Olejnickova V., Sankova B., Sedmera D., Janacek J. (2018). Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front. Physiol. 9, 1876. 10.3389/fphys.2018.01876 PubMed DOI PMC
Paterick T. E., Tajik A. J. (2012). Left ventricular noncompaction: a diagnostically challenging cardiomyopathy. Circ. J. 76 (7), 1556–1562. 10.1253/circj.cj-12-0666 PubMed DOI
Phillips H. M., Mahendran P., Singh E., Anderson R. H., Chaudhry B., Henderson D. J. (2013). Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res. 99 (3), 452–460. 10.1093/cvr/cvt132 PubMed DOI PMC
Phillips H. M., Papoutsi T., Soenen H., Ybot-Gonzalez P., Henderson D. J., Chaudhry B. (2012). Neural crest cell survival is dependent on Rho kinase and is required for development of the mid face in mouse embryos. PLoS One 7 (5), e37685. 10.1371/journal.pone.0037685 PubMed DOI PMC
Rohr S. (2012). Arrhythmogenic implications of fibroblast-myocyte interactions. Circ. Arrhythm. Electrophysiol. 5 (2), 442–452. 10.1161/CIRCEP.110.957647 PubMed DOI
Sankova B., Benes J., Jr., Krejci E., Dupays L., Theveniau-Ruissy M., Miquerol L., et al. (2012). The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc Res. 95, 469–479. 10.1093/cvr/cvs210 PubMed DOI
Schmittgen T. D., Livak K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3 (6), 1101–1108. 10.1038/nprot.2008.73 PubMed DOI
Sedmera D., Neckar J., Benes J., Jr., Pospisilova J., Petrak J., Sedlacek K., et al. (2016). Changes in myocardial composition and conduction properties in rat heart failure model induced by chronic volume overload. Front. Physiol. 7, 367. 10.3389/fphys.2016.00367 PubMed DOI PMC
Sedmera D., Pexieder T., Vuillemin M., Thompson R. P., Anderson R. H. (2000). Developmental patterning of the myocardium. Anat. Rec. 258 (4), 319–337. 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O PubMed DOI
Sedmera D., Thompson R. P. (2011). Myocyte proliferation in the developing heart. Dev. Dyn. 240 (6), 1322–1334. 10.1002/dvdy.22650 PubMed DOI PMC
Severs N. J., Coppen S. R., Dupont E., Yeh H. I., Ko Y. S., Matsushita T. (2004). Gap junction alterations in human cardiac disease. Cardiovasc Res. 62 (2), 368–377. 10.1016/j.cardiores.2003.12.007 PubMed DOI
Shi J., Wei L. (2022). Rho kinases in embryonic development and stem cell research. Arch. Immunol. Ther. Exp. Warsz. 70 (1), 4. 10.1007/s00005-022-00642-z PubMed DOI PMC
Shi J., Zhang Y. W., Yang Y., Zhang L., Wei L. (2010). ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. J. Mol. Cell Cardiol. 49 (5), 819–828. 10.1016/j.yjmcc.2010.08.008 PubMed DOI PMC
Shimizu Y., Thumkeo D., Keel J., Ishizaki T., Oshima H., Oshima M., et al. (2005). ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J. Cell Biol. 168 (6), 941–953. 10.1083/jcb.200411179 PubMed DOI PMC
Srinivas S., Watanabe T., Lin C. S., William C. M., Tanabe Y., Jessell T. M., et al. (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4. 10.1186/1471-213x-1-4 PubMed DOI PMC
Sugiyama A., Yatomi Y., Takahara A., Satoh Y., Hashimoto K. (2002). Cardiac effects of a selective rho-associated kinase inhibitor, Y-27632, assessed in canine isolated, blood-perfused heart preparations. Jpn. J. Pharmacol. 88 (3), 359–361. 10.1254/jjp.88.359 PubMed DOI
Sunamura S., Satoh K., Kurosawa R., Ohtsuki T., Kikuchi N., Elias-Al-Mamun M., et al. (2018). Different roles of myocardial ROCK1 and ROCK2 in cardiac dysfunction and postcapillary pulmonary hypertension in mice. Proc. Natl. Acad. Sci. U. S. A. 115 (30), E7129-E7138–E7138. 10.1073/pnas.1721298115 PubMed DOI PMC
Sysa-Shah P., Sorensen L. L., Abraham M. R., Gabrielson K. L. (2015). Electrocardiographic characterization of cardiac hypertrophy in mice that overexpress the ErbB2 receptor tyrosine kinase. Comp. Med. 65 (4), 295–307. PubMed PMC
Thumkeo D., Keel J., Ishizaki T., Hirose M., Nonomura K., Oshima H., et al. (2003). Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol. Cell Biol. 23 (14), 5043–5055. 10.1128/MCB.23.14.5043-5055.2003 PubMed DOI PMC
Tian X., Hu T., Zhang H., He L., Huang X., Liu Q., et al. (2013). Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23 (9), 1075–1090. 10.1038/cr.2013.83 PubMed DOI PMC
Tian X., Hu T., Zhang H., He L., Huang X., Liu Q., et al. (2014). Vessel formation. de novo formation of a distinct coronary vascular population in neonatal heart. Science 345 (6192), 90–94. 10.1126/science.1251487 PubMed DOI PMC
Tian X., Li Y., He L., Zhang H., Huang X., Liu Q., et al. (2017). Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat. Commun. 8 (1), 87. 10.1038/s41467-017-00118-1 PubMed DOI PMC
Varnava A. M. (2001). Isolated left ventricular non-compaction: a distinct cardiomyopathy? Heart 86 (6), 599–600. 10.1136/heart.86.6.599 PubMed DOI PMC
Wei L., Roberts W., Wang L., Yamada M., Zhang S., Zhao Z., et al. (2001). Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128 (15), 2953–2962. 10.1242/dev.128.15.2953 PubMed DOI
Weninger W. J., Mohun T. J. (2007). Three-dimensional analysis of molecular signals with episcopic imaging techniques. Methods Mol. Biol. 411, 35–46. 10.1007/978-1-59745-549-7_4 PubMed DOI
Wessels A., Sedmera D. (2003). Developmental anatomy of the heart: a tale of mice and man. Physiol. Genomics 15 (3), 165–176. 10.1152/physiolgenomics.00033.2003 PubMed DOI
Zhang Y. M., Bo J., Taffet G. E., Chang J., Shi J., Reddy A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 20 (7), 916–925. 10.1096/fj.05-5129com PubMed DOI
Zhao Z., Rivkees S. A. (2003). Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev. Dyn. 226 (1), 24–32. 10.1002/dvdy.10212 PubMed DOI