HIF-1α is required for development of the sympathetic nervous system
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31196952
PubMed Central
PMC6613092
DOI
10.1073/pnas.1903510116
PII: 1903510116
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac innervation, coronary artery branching, hypoxia, sympathetic neurons, tyrosine hydroxylase,
- MeSH
- anomálie koronárních cév embryologie MeSH
- chromafinní buňky MeSH
- dřeň nadledvin embryologie inervace MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa fyziologie MeSH
- koronární cévy embryologie MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- srdce embryologie inervace MeSH
- sympatická ganglia embryologie růst a vývoj MeSH
- sympatický nervový systém enzymologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
The molecular mechanisms regulating sympathetic innervation of the heart during embryogenesis and its importance for cardiac development and function remain to be fully elucidated. We generated mice in which conditional knockout (CKO) of the Hif1a gene encoding the transcription factor hypoxia-inducible factor 1α (HIF-1α) is mediated by an Islet1-Cre transgene expressed in the cardiac outflow tract, right ventricle and atrium, pharyngeal mesoderm, peripheral neurons, and hindlimbs. These Hif1aCKO mice demonstrate significantly decreased perinatal survival and impaired left ventricular function. The absence of HIF-1α impaired the survival and proliferation of preganglionic and postganglionic neurons of the sympathetic system, respectively. These defects resulted in hypoplasia of the sympathetic ganglion chain and decreased sympathetic innervation of the Hif1aCKO heart, which was associated with decreased cardiac contractility. The number of chromaffin cells in the adrenal medulla was also decreased, indicating a broad dependence on HIF-1α for development of the sympathetic nervous system.
German Heart Centre Munich Technical University 80636 Munich Germany
Institute for Cell Engineering Johns Hopkins University School of Medicine Baltimore MD 21205
Institute of Anatomy 1st Faculty of Medicine Charles University 110 00 Prague Czechia
Institute of Dental Medicine 1st Faculty of Medicine Charles University 110 00 Prague Czechia
Institute of Physiology Czech Academy of Sciences 142 00 Prague Czechia
Zobrazit více v PubMed
Kimura K., Ieda M., Fukuda K., Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ. Res. 110, 325–336 (2012). PubMed
Leistner H. L., et al. , Heart rate and heart rate variability during sleep in aborted sudden infant death syndrome. J. Pediatr. 97, 51–55 (1980). PubMed
Vaseghi M., Shivkumar K., The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404–419 (2008). PubMed PMC
Rohrer H., Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur. J. Neurosci. 34, 1563–1573 (2011). PubMed
Huber K., The sympathoadrenal cell lineage: Specification, diversification, and new perspectives. Dev. Biol. 298, 335–343 (2006). PubMed
Gonsalvez D. G., et al. , Proliferation and cell cycle dynamics in the developing stellate ganglion. J. Neurosci. 33, 5969–5979 (2013). PubMed PMC
Kameda Y., Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res. 357, 527–548 (2014). PubMed
Potzner M. R., et al. , Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137, 775–784 (2010). PubMed PMC
Huber K., et al. , The LIM-homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev. Biol. 380, 286–298 (2013). PubMed PMC
Zhang Q., et al. , Temporal requirements for ISL1 in sympathetic neuron proliferation, differentiation, and diversification. Cell Death Dis. 9, 247 (2018). PubMed PMC
Irie T., et al. , Cardiac sympathetic innervation via middle cervical and stellate ganglia and antiarrhythmic mechanism of bilateral stellectomy. Am. J. Physiol. Heart Circ. Physiol. 312, H392–H405 (2017). PubMed PMC
Pardini B. J., Lund D. D., Schmid P. G., Organization of the sympathetic postganglionic innervation of the rat heart. J. Auton. Nerv. Syst. 28, 193–201 (1989). PubMed
Nam J., et al. , Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140, 1475–1485 (2013). PubMed PMC
Liu H., et al. , Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heart. Dev. Dyn. 238, 2760–2769 (2009). PubMed PMC
Iyer N. V., et al. , Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998). PubMed PMC
Compernolle V., et al. , Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1α. Cardiovasc. Res. 60, 569–579 (2003). PubMed
Ryan H. E., et al. , Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000). PubMed
Krishnan J., et al. , Essential role of developmentally activated hypoxia-inducible factor 1α for cardiac morphogenesis and function. Circ. Res. 103, 1139–1146 (2008). PubMed
Huang Y., et al. , Cardiac myocyte-specific HIF-1α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 18, 1138–1140 (2004). PubMed
Guimarães-Camboa N., et al. , HIF-1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev. Cell 33, 507–521 (2015). PubMed PMC
Schnell P. O., et al. , Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J. Neurochem. 85, 483–491 (2003). PubMed
Milosevic J., et al. , Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci. 27, 412–421 (2007). PubMed PMC
Cai C. L., et al. , Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003). PubMed PMC
Yang L., et al. , Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006). PubMed PMC
Dvorakova M., et al. , Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci. Rep. 6, 38253 (2016). PubMed PMC
Lin L., et al. , β-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 9313–9318 (2007). PubMed PMC
Kramer I., et al. , A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006). PubMed
Peng T., et al. , Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500, 589–592 (2013). PubMed PMC
Macova I., et al. , Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J. Neurosci. 39, 984–1004 (2019). PubMed PMC
Provot S., et al. , Hif-1α regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451–464 (2007). PubMed PMC
Mendelsohn M. E., Karas R. H., Molecular and cellular basis of cardiovascular gender differences. Science 308, 1583–1587 (2005). PubMed
Glebova N. O., Ginty D. D., Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci. 24, 743–751 (2004). PubMed PMC
Liang X., et al. , Transcription factor ISL1 is essential for pacemaker development and function. J. Clin. Invest. 125, 3256–3268 (2015). PubMed PMC
Liang X., et al. , HCN4 dynamically marks the first heart field and conduction system precursors. Circ. Res. 113, 399–407 (2013). PubMed PMC
Sedmera D., et al. , Changes in myocardial composition and conduction properties in rat heart failure model induced by chronic volume overload. Front. Physiol. 7, 367 (2016). PubMed PMC
Tittarelli A., Janji B., Van Moer K., Noman M. Z., Chouaib S., The selective degradation of synaptic connexin 43 protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing. J. Biol. Chem. 290, 23670–23679 (2015). PubMed PMC
Pérez-Pomares J. M., et al. , Congenital coronary artery anomalies: A bridge from embryology to anatomy and pathophysiology. A position statement of the Development, Anatomy, and Pathology ESC Working Group. Cardiovasc. Res. 109, 204–216 (2016). PubMed
Pfaff S. L., Mendelsohn M., Stewart C. L., Edlund T., Jessell T. M., Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996). PubMed
Kasemeier-Kulesa J. C., Morrison J. A., Lefcort F., Kulesa P. M., TrkB/BDNF signalling patterns the sympathetic nervous system. Nat. Commun. 6, 8281 (2015). PubMed PMC
Semenza G. L., Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011). PubMed
Semenza G. L., Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012). PubMed PMC
Cerychova R., Pavlinkova G., HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front. Endocrinol. (Lausanne) 9, 460 (2018). PubMed PMC
Cerychova R., et al. , Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc. Diabetol. 17, 68 (2018). PubMed PMC
Bohuslavova R., Skvorova L., Sedmera D., Semenza G. L., Pavlinkova G., Increased susceptibility of HIF-1α heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J. Mol. Cell. Cardiol. 60, 129–141 (2013). PubMed
Sun Y., et al. , A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 11, 1283–1293 (2008). PubMed PMC
Yuan X., et al. , Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J. Clin. Invest. 127, 2235–2248 (2017). PubMed PMC
Francis N., et al. , NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev. Biol. 210, 411–427 (1999). PubMed
Hassankhani A., et al. , Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev. Biol. 169, 309–321 (1995). PubMed
Schulz R., et al. , Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 153, 90–106 (2015). PubMed PMC
Deo R., Albert C. M., Epidemiology and genetics of sudden cardiac death. Circulation 125, 620–637 (2012). PubMed PMC
Waza A. A., Andrabi K., Hussain M. U., Protein kinase C (PKC)-mediated interaction between conexin43 (Cx43) and K+(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia-induced cell apoptosis. Cell. Signal. 26, 1909–1917 (2014). PubMed
Sun Y., et al. , Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304, 286–296 (2007). PubMed PMC
Kobayashi K., et al. , Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J. Biol. Chem. 270, 27235–27243 (1995). PubMed
Faxelius G., Hägnevik K., Lagercrantz H., Lundell B., Irestedt L., Catecholamine surge and lung function after delivery. Arch. Dis. Child. 58, 262–266 (1983). PubMed PMC
Schwartz P. J., et al. , Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338, 1709–1714 (1998). PubMed
Le Magueresse C., et al. , Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb. Cortex 22, 2285–2296 (2012). PubMed
Himmels P., et al. , Motor neurons control blood vessel patterning in the developing spinal cord. Nat. Commun. 8, 14583 (2017). PubMed PMC
Duran J., et al. , The HIF1A C85T single nucleotide polymorphism influences the number of branches of the human coronary tree. Cardiology 121, 156–159 (2012). PubMed
Wikenheiser J., et al. , Altering HIF-1α through 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure affects coronary vessel development. Cardiovasc. Toxicol. 13, 161–167 (2013). PubMed PMC
Pistollato F., et al. , Hypoxia and HIF1α repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 27, 7–17 (2009). PubMed
Manalo D. J., et al. , Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005). PubMed
Ruiz de Almodovar C., et al. , VEGF mediates commissural axon chemoattraction through its receptor Flk1. Neuron 70, 966–978 (2011). PubMed PMC
Mukouyama Y. S., Gerber H. P., Ferrara N., Gu C., Anderson D. J., Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132, 941–952 (2005). PubMed
Oosthuyse B., et al. , Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001). PubMed
Bishop T., et al. , Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol. Cell. Biol. 28, 3386–3400 (2008). PubMed PMC
Semenza G. L., Prabhakar N. R., The role of hypoxia-inducible factors in carotid body (patho) physiology. J. Physiol. 596, 2977–2983 (2018). PubMed PMC
Sarkar K., et al. , Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc. Natl. Acad. Sci. U.S.A. 109, 10504–10509 (2012). PubMed PMC
Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001). PubMed PMC
Kolesová H., Bartoš M., Hsieh W. C., Olejníčková V., Sedmera D., Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 247, 1018–1027 (2018). PubMed
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
NEUROD1 Is Required for the Early α and β Endocrine Differentiation in the Pancreas
Tissue clearing and imaging methods for cardiovascular development
Molecular Aspects of the Development and Function of Auditory Neurons