HIF-1α is required for development of the sympathetic nervous system

. 2019 Jul 02 ; 116 (27) : 13414-13423. [epub] 20190613

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31196952

The molecular mechanisms regulating sympathetic innervation of the heart during embryogenesis and its importance for cardiac development and function remain to be fully elucidated. We generated mice in which conditional knockout (CKO) of the Hif1a gene encoding the transcription factor hypoxia-inducible factor 1α (HIF-1α) is mediated by an Islet1-Cre transgene expressed in the cardiac outflow tract, right ventricle and atrium, pharyngeal mesoderm, peripheral neurons, and hindlimbs. These Hif1aCKO mice demonstrate significantly decreased perinatal survival and impaired left ventricular function. The absence of HIF-1α impaired the survival and proliferation of preganglionic and postganglionic neurons of the sympathetic system, respectively. These defects resulted in hypoplasia of the sympathetic ganglion chain and decreased sympathetic innervation of the Hif1aCKO heart, which was associated with decreased cardiac contractility. The number of chromaffin cells in the adrenal medulla was also decreased, indicating a broad dependence on HIF-1α for development of the sympathetic nervous system.

Zobrazit více v PubMed

Kimura K., Ieda M., Fukuda K., Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ. Res. 110, 325–336 (2012). PubMed

Leistner H. L., et al. , Heart rate and heart rate variability during sleep in aborted sudden infant death syndrome. J. Pediatr. 97, 51–55 (1980). PubMed

Vaseghi M., Shivkumar K., The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404–419 (2008). PubMed PMC

Rohrer H., Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur. J. Neurosci. 34, 1563–1573 (2011). PubMed

Huber K., The sympathoadrenal cell lineage: Specification, diversification, and new perspectives. Dev. Biol. 298, 335–343 (2006). PubMed

Gonsalvez D. G., et al. , Proliferation and cell cycle dynamics in the developing stellate ganglion. J. Neurosci. 33, 5969–5979 (2013). PubMed PMC

Kameda Y., Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res. 357, 527–548 (2014). PubMed

Potzner M. R., et al. , Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137, 775–784 (2010). PubMed PMC

Huber K., et al. , The LIM-homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev. Biol. 380, 286–298 (2013). PubMed PMC

Zhang Q., et al. , Temporal requirements for ISL1 in sympathetic neuron proliferation, differentiation, and diversification. Cell Death Dis. 9, 247 (2018). PubMed PMC

Irie T., et al. , Cardiac sympathetic innervation via middle cervical and stellate ganglia and antiarrhythmic mechanism of bilateral stellectomy. Am. J. Physiol. Heart Circ. Physiol. 312, H392–H405 (2017). PubMed PMC

Pardini B. J., Lund D. D., Schmid P. G., Organization of the sympathetic postganglionic innervation of the rat heart. J. Auton. Nerv. Syst. 28, 193–201 (1989). PubMed

Nam J., et al. , Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140, 1475–1485 (2013). PubMed PMC

Liu H., et al. , Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heart. Dev. Dyn. 238, 2760–2769 (2009). PubMed PMC

Iyer N. V., et al. , Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998). PubMed PMC

Compernolle V., et al. , Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1α. Cardiovasc. Res. 60, 569–579 (2003). PubMed

Ryan H. E., et al. , Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000). PubMed

Krishnan J., et al. , Essential role of developmentally activated hypoxia-inducible factor 1α for cardiac morphogenesis and function. Circ. Res. 103, 1139–1146 (2008). PubMed

Huang Y., et al. , Cardiac myocyte-specific HIF-1α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 18, 1138–1140 (2004). PubMed

Guimarães-Camboa N., et al. , HIF-1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev. Cell 33, 507–521 (2015). PubMed PMC

Schnell P. O., et al. , Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J. Neurochem. 85, 483–491 (2003). PubMed

Milosevic J., et al. , Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci. 27, 412–421 (2007). PubMed PMC

Cai C. L., et al. , Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003). PubMed PMC

Yang L., et al. , Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006). PubMed PMC

Dvorakova M., et al. , Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci. Rep. 6, 38253 (2016). PubMed PMC

Lin L., et al. , β-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 9313–9318 (2007). PubMed PMC

Kramer I., et al. , A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006). PubMed

Peng T., et al. , Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500, 589–592 (2013). PubMed PMC

Macova I., et al. , Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J. Neurosci. 39, 984–1004 (2019). PubMed PMC

Provot S., et al. , Hif-1α regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451–464 (2007). PubMed PMC

Mendelsohn M. E., Karas R. H., Molecular and cellular basis of cardiovascular gender differences. Science 308, 1583–1587 (2005). PubMed

Glebova N. O., Ginty D. D., Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci. 24, 743–751 (2004). PubMed PMC

Liang X., et al. , Transcription factor ISL1 is essential for pacemaker development and function. J. Clin. Invest. 125, 3256–3268 (2015). PubMed PMC

Liang X., et al. , HCN4 dynamically marks the first heart field and conduction system precursors. Circ. Res. 113, 399–407 (2013). PubMed PMC

Sedmera D., et al. , Changes in myocardial composition and conduction properties in rat heart failure model induced by chronic volume overload. Front. Physiol. 7, 367 (2016). PubMed PMC

Tittarelli A., Janji B., Van Moer K., Noman M. Z., Chouaib S., The selective degradation of synaptic connexin 43 protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing. J. Biol. Chem. 290, 23670–23679 (2015). PubMed PMC

Pérez-Pomares J. M., et al. , Congenital coronary artery anomalies: A bridge from embryology to anatomy and pathophysiology. A position statement of the Development, Anatomy, and Pathology ESC Working Group. Cardiovasc. Res. 109, 204–216 (2016). PubMed

Pfaff S. L., Mendelsohn M., Stewart C. L., Edlund T., Jessell T. M., Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996). PubMed

Kasemeier-Kulesa J. C., Morrison J. A., Lefcort F., Kulesa P. M., TrkB/BDNF signalling patterns the sympathetic nervous system. Nat. Commun. 6, 8281 (2015). PubMed PMC

Semenza G. L., Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011). PubMed

Semenza G. L., Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012). PubMed PMC

Cerychova R., Pavlinkova G., HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front. Endocrinol. (Lausanne) 9, 460 (2018). PubMed PMC

Cerychova R., et al. , Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc. Diabetol. 17, 68 (2018). PubMed PMC

Bohuslavova R., Skvorova L., Sedmera D., Semenza G. L., Pavlinkova G., Increased susceptibility of HIF-1α heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J. Mol. Cell. Cardiol. 60, 129–141 (2013). PubMed

Sun Y., et al. , A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 11, 1283–1293 (2008). PubMed PMC

Yuan X., et al. , Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J. Clin. Invest. 127, 2235–2248 (2017). PubMed PMC

Francis N., et al. , NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev. Biol. 210, 411–427 (1999). PubMed

Hassankhani A., et al. , Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev. Biol. 169, 309–321 (1995). PubMed

Schulz R., et al. , Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 153, 90–106 (2015). PubMed PMC

Deo R., Albert C. M., Epidemiology and genetics of sudden cardiac death. Circulation 125, 620–637 (2012). PubMed PMC

Waza A. A., Andrabi K., Hussain M. U., Protein kinase C (PKC)-mediated interaction between conexin43 (Cx43) and K+(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia-induced cell apoptosis. Cell. Signal. 26, 1909–1917 (2014). PubMed

Sun Y., et al. , Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304, 286–296 (2007). PubMed PMC

Kobayashi K., et al. , Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J. Biol. Chem. 270, 27235–27243 (1995). PubMed

Faxelius G., Hägnevik K., Lagercrantz H., Lundell B., Irestedt L., Catecholamine surge and lung function after delivery. Arch. Dis. Child. 58, 262–266 (1983). PubMed PMC

Schwartz P. J., et al. , Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338, 1709–1714 (1998). PubMed

Le Magueresse C., et al. , Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb. Cortex 22, 2285–2296 (2012). PubMed

Himmels P., et al. , Motor neurons control blood vessel patterning in the developing spinal cord. Nat. Commun. 8, 14583 (2017). PubMed PMC

Duran J., et al. , The HIF1A C85T single nucleotide polymorphism influences the number of branches of the human coronary tree. Cardiology 121, 156–159 (2012). PubMed

Wikenheiser J., et al. , Altering HIF-1α through 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure affects coronary vessel development. Cardiovasc. Toxicol. 13, 161–167 (2013). PubMed PMC

Pistollato F., et al. , Hypoxia and HIF1α repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 27, 7–17 (2009). PubMed

Manalo D. J., et al. , Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005). PubMed

Ruiz de Almodovar C., et al. , VEGF mediates commissural axon chemoattraction through its receptor Flk1. Neuron 70, 966–978 (2011). PubMed PMC

Mukouyama Y. S., Gerber H. P., Ferrara N., Gu C., Anderson D. J., Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132, 941–952 (2005). PubMed

Oosthuyse B., et al. , Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001). PubMed

Bishop T., et al. , Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol. Cell. Biol. 28, 3386–3400 (2008). PubMed PMC

Semenza G. L., Prabhakar N. R., The role of hypoxia-inducible factors in carotid body (patho) physiology. J. Physiol. 596, 2977–2983 (2018). PubMed PMC

Sarkar K., et al. , Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc. Natl. Acad. Sci. U.S.A. 109, 10504–10509 (2012). PubMed PMC

Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001). PubMed PMC

Kolesová H., Bartoš M., Hsieh W. C., Olejníčková V., Sedmera D., Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 247, 1018–1027 (2018). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling

. 2024 ; 12 () : 1471751. [epub] 20241007

Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model

. 2024 Oct ; 47 (10) : 2718-2730. [epub] 20240202

Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences

. 2024 Apr 18 ; 73 (Suppl 1) : S35-S48. [epub] 20240418

Reprogramming of the developing heart by Hif1a-deficient sympathetic system and maternal diabetes exposure

. 2024 ; 15 () : 1344074. [epub] 20240305

Dysregulation of hypoxia-inducible factor 1α in the sympathetic nervous system accelerates diabetic cardiomyopathy

. 2023 Apr 18 ; 22 (1) : 88. [epub] 20230418

Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo

. 2022 Mar 28 ; 12 (1) : 5264. [epub] 20220328

NEUROD1 Is Required for the Early α and β Endocrine Differentiation in the Pancreas

. 2021 Jun 23 ; 22 (13) : . [epub] 20210623

Tissue clearing and imaging methods for cardiovascular development

. 2021 Apr 23 ; 24 (4) : 102387. [epub] 20210401

Molecular Aspects of the Development and Function of Auditory Neurons

. 2020 Dec 24 ; 22 (1) : . [epub] 20201224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...