Tissue clearing and imaging methods for cardiovascular development
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33981974
PubMed Central
PMC8086021
DOI
10.1016/j.isci.2021.102387
PII: S2589-0042(21)00355-2
Knihovny.cz E-zdroje
- Klíčová slova
- Biology Experimental Methods, Imaging Methods in Chemistry, Optical Imaging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Science Prague Czech Republic
Zobrazit více v PubMed
Aanhaanen W.T.J., Mommersteeg M.T.M., Norden J., Wakker V., Vries C.de G., Anderson R.H., Kispert A., Moorman A.F.M., Christoffels V.M. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction Axis of the mouse heart. Circ. Res. 2010;107:728–736. PubMed
Akerberg A.A., Burns C.E., Burns C.G., Nguyen C. Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Dis. Model. Mech. 2019;12:dmm040188. PubMed PMC
Alon S., Huynh G.H., Boyden E.S. Expansion microscopy: enabling single cell analysis in intact biological systems. FEBS J. 2019;286:1482–1494. PubMed PMC
Al-Surmi A., Wirza R., Mahmod R., Khalid F., Dimon M.Z. A new human heart vessel identification, segmentation and 3D reconstruction mechanism. J. Cardiothorac. Surg. 2014;9:161. PubMed PMC
Ariel P. A beginner’s guide to tissue clearing. Int. J. Biochem. Cell Biol. 2017;84:35–39. PubMed PMC
Azaripour A., Lagerweij T., Scharfbillig C., Jadczak A.E., Willershausen B., Van Noorden C.J.F. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 2016;51:9–23. PubMed
Baek K.I., Ding Y., Chang C.-C., Chang M., Sevag Packard R.R., Hsu J.J., Fei P., Hsiai T.K. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. Prog. Biophys. Mol. Biol. 2018;138:105–115. PubMed PMC
Becker K., Jährling N., Saghafi S., Weiler R., Dodt H.-U. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One. 2012;7 doi: 10.1371/journal.pone.0033916. PubMed DOI PMC
Beis D., Bartman T., Jin S.-W., Scott I.C., D’Amico L.A., Ober E.A., Verkade H., Frantsve J., Field H.A., Wehman A.J.D. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development. 2005;132:4193–4204. PubMed
Belle M., Godefroy D., Couly G., Malone S.A., Collier F., Giacobini P., Chédotal A. Tridimensional visualization and analysis of early human development. Cell. 2017;169:161–173.e12. PubMed
Bensley J.G., De Matteo R., Harding R., Black M.J. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 2016;6:1–10. PubMed PMC
Bharadwaj K.N., Spitz C., Shekhar A., Yalcin H.C., Butcher J.T. Computational fluid dynamics of developing avian outflow tract heart valves. Ann. Biomed. Eng. 2012;40:2212–2227. PubMed PMC
Blinder P., Tsai P.S., Kaufhold J.P., Knutsen P.M., Suhl H., Kleinfeld D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 2013;16:889–897. PubMed PMC
Bohuslavova R., Cerychova R., Papousek F., Olejnickova V., Bartos M., Görlach A., Kolar F., Sedmera D., Semenza G.L., Pavlinkova G. HIF-1α is required for development of the sympathetic nervous system. Proc. Natl. Acad. Sci. U S A. 2019;116:13414–13423. PubMed PMC
Boselli F., Vermot J.J.M. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart. Methods. 2016;94:129–134. PubMed
Bryson J.L., Coles M.C., Manley N.R. A method for labeling vasculature in embryonic mice. J. Vis. Exp. 2011:e3267. doi: 10.3791/3267. PubMed DOI PMC
Buffinton C.M., Faas D., Sedmera D. Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle. Biomech. Model. Mechanobiol. 2013;12:1037–1051. PubMed PMC
Butcher J.T., Sedmera D., Guldberg R.E., Markwald R.R. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev. Dyn. 2007;236:802–809. PubMed
Cahalan M.D., Parker I., Wei S.H., Miller M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2002;2:872–880. PubMed PMC
Cahoon C.K., Yu Z., Wang Y., Guo F., Unruh J.R., Slaughter B.D., Hawley R.S. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc. Natl. Acad. Sci. U S A. 2017;114:E6857–E6866. PubMed PMC
Carrillo M., Chuecos M., Gandhi K., Bednov A., Moore D.L., Maher J., Ventolini G., Ji G., Schlabritz-Loutsevitch N. Optical tissue clearing in combination with perfusion and immunofluorescence for placental vascular imaging. Medicine (Baltimore) 2018;97:e12392. PubMed PMC
Cavallero S., Shen H., Yi C., Lien C.-L., Kumar S.R., Sucov H.M. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev. Cell. 2015;33:469–477. PubMed PMC
Cebasek V., Erzen I., Vyhnal A., Janacek J., Ribaric S., Kubinova L. The estimation error of skeletal muscle capillary supply is significantly reduced by 3D method. Microvasc. Res. 2010;79:40–46. PubMed
Chapman S.C., Lawson A., MacArthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development. 2005;132:935–940. PubMed
Chen F., Tillberg P.W., Boyden E.S. Expansion microscopy. Science. 2015;347:543–548. PubMed PMC
Chen F., Wassie A.T., Cote A.J., Sinha A., Alon S., Asano S., Daugharthy E.R., Chang J.-B., Marblestone A., Church G.M. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods. 2016;13:679–684. PubMed PMC
Chen C., Qin C., Qiu H., Tarroni G., Duan J., Bai W., Rueckert D. Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 2020;7:25. PubMed PMC
Choi W.J., Maga A.M., Kim E.S., Wang R.K. A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo. J. Biophotonics. 2020;13:e201960225. PubMed
Choquet C., Kelly R.G., Miquerol L. Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat. Commun. 2020;11:5300. PubMed PMC
Chozinski T.J., Halpern A.R., Okawa H., Kim H.-J., Tremel G.J., Wong R.O., Vaughan J.C. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods. 2016;13:485–488. PubMed PMC
Chung K., Wallace J., Kim S.-Y., Kalyanasundaram S., Andalman A.S., Davidson T.J., Mirzabekov J.J., Zalocusky K.A., Mattis J., Denisin A.K. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332–337. PubMed PMC
Cooper S., Bakal C. Accelerating live single-cell signalling studies. Trends Biotechnol. 2017;35:422–433. PubMed
Corliss B.A., Mathews C., Doty R., Rohde G., Peirce S.M. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation. 2019;26:e12520. PubMed PMC
Costantini I., Cicchi R., Cicchi R., Silvestri L., Vanzi F., Vanzi F., Pavone F.S., Pavone F.S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express. 2019;10:5251–5267. PubMed PMC
Creswell L.L., Wyers S.G., Pirolo J.S., Perman W.H., Vannier M.W., Pasque M.K. Mathematical modeling of the heart using magnetic resonance imaging. IEEE Trans. Med. Imaging. 1992;11:581–589. PubMed
D’Amico L., Scott I.C., Jungblut B., Stainier D.Y. A mutation in zebrafish hmgcr1b reveals a role for isoprenoids in vertebrate heart-tube formation. Curr. Biol. 2007;17:252–259. PubMed
Degenhardt Karl, Wright Alexander C., Debra H., Arun P., Epstein Jonathan A. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ. Cardiovasc. Imaging. 2010;3:314–322. PubMed PMC
Di Giovanna A.P., Tibo A., Silvestri L., Müllenbroich M.C., Costantini I., Allegra Mascaro A.L., Sacconi L., Frasconi P., Pavone F.S. Whole-brain vasculature reconstruction at the single capillary level. Sci. Rep. 2018;8:12573. PubMed PMC
Ding Y., Ma J., Langenbacher A.D., Baek K.I., Lee J., Chang C.-C., Hsu J.J., Kulkarni R.P., Belperio J., Shi W. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight. 2018;3:e121396. PubMed PMC
Di Gregorio S., Fedele M., Pontone G., Corno A.F., Zunino P., Vergara C., Quarteroni A. A computational model applied to myocardial perfusion in the human heart: From large coronaries to microvasculature. Journal of Computational Physics. 2021;424:109836. doi: 10.1016/j.jcp.2020.109836. DOI
Ding Y., Gudapati V., Lin R., Fei Y., Song S., Chang C.-C., In K., Wang Z., Roustaei M., Kuang D. Saak transform-based machine learning for light-sheet imaging of cardiac trabeculation. IEEE Trans. Biomed. Eng. 2021;68:225–235. PubMed PMC
Ecabert O., Peters J., Walker M.J., Ivanc T., Lorenz C., von Berg J., Lessick J., Vembar M., Weese J. Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med. Image Anal. 2011;15:863–876. PubMed
Epah J., Pálfi K., Dienst F.L., Malacarne P.F., Bremer R., Salamon M., Kumar S., Jo H., Schürmann C., Brandes R.P. 3D imaging and quantitative analysis of vascular networks: a comparison of ultramicroscopy and micro-computed tomography. Theranostics. 2018;8:2117–2133. PubMed PMC
Ermakova O., Orsini T., Gambadoro A., Chiani F., Tocchini-Valentini G.P. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals. Mamm. Genome. 2018;29:245–259. PubMed PMC
Ertürk A., Becker K., Jährling N., Mauch C.P., Hojer C.D., Egen J.G., Hellal F., Bradke F., Sheng M., Dodt H.-U. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 2012;7:1983–1995. PubMed
Faulkner E.L., Thomas S.G., Neely R.K. An introduction to the methodology of expansion microscopy. Int. J. Biochem. Cell Biol. 2020;124:105764. PubMed
Fei P., Lee J., Packard R.R.S., Sereti K.-I., Xu H., Ma J., Ding Y., Kang H., Chen H., Sung K. Cardiac light-sheet fluorescent microscopy for multi-scale and rapid imaging of architecture and function. Sci. Rep. 2016;6:22489. PubMed PMC
Fonseca C.G., Backhaus M., Bluemke D.A., Britten R.D., Chung J.D., Cowan B.R., Dinov I.D., Finn J.P., Hunter P.J., Kadish A.H. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27:2288–2295. PubMed PMC
Forouhar A.S., Liebling M., Hickerson A., Nasiraei-Moghaddam A., Tsai H.-J., Hove J.R., Fraser S.E., Dickinson M.E., Gharib M. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312:751–753. PubMed
Foster D.S., Nguyen A.T., Chinta M., Salhotra A., Jones R.E., Mascharak S., Titan A.L., Ransom R.C., da Silva O.L., Foley E., Briger E., Longaker M.T. A Clearing Technique to Enhance Endogenous Fluorophores in Skin and. Soft Tissue. Sci Rep. 2019;9:15791. doi: 10.1038/s41598-019-50359-x. PubMed DOI PMC
Frangi A.F., Niessen W.J., Viergever M.A. Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans. Med. Imaging. 2001;20:2–25. PubMed
Freifeld L., Odstrcil I., Förster D., Ramirez A., Gagnon J.A., Randlett O., Costa E.K., Asano S., Celiker O.T., Gao R. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc. Natl. Acad. Sci. U S A. 2017;114:E10799–E10808. PubMed PMC
Gagnon L., Smith A.F., Boas D.A., Devor A., Secomb T.W., Sakadžić S. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front. Comput. Neurosci. 2016;10:82. PubMed PMC
Gao M., Maraspini R., Beutel O., Zehtabian A., Eickholt B., Honigmann A., Ewers H. Expansion stimulated emission depletion microscopy (ExSTED) ACS Nano. 2018;12:4178–4185. PubMed
Gao R., Asano S.M., Boyden E.S. Q&A: expansion microscopy. BMC Biol. 2017;15:50. PubMed PMC
Ghanavati S., Lerch J.P., Sled J.G. Automatic anatomical labeling of the complete cerebral vasculature in mouse models. Neuroimage. 2014;95:117–128. PubMed
Gkontra P., Norton K.-A., Żak M.M., Clemente C., Agüero J., Ibáñez B., Santos A., Popel A.S., Arroyo A.G. Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis. Sci. Rep. 2018;8:1854. PubMed PMC
Gómez-Gaviro M.V., Sanderson D., Ripoll J., Desco M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience. 2020;23:101432. PubMed PMC
Goodyer W.R., Beyersdorf B.M., Paik D.T., Tian L., Li G., Buikema J.W., Chirikian O., Choi S., Venkatraman S., Adams E.L. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ. Res. 2019;125:379–397. PubMed PMC
Hahn A., Bode J., Alexander A., Karimian-Jazi K., Schregel K., Schwarz D., Sommerkamp A.C., Krüwel T., Abdollahi A., Wick W. Large-scale characterization of the microvascular geometry in development and disease by tissue clearing and quantitative ultramicroscopy. J. Cereb. Blood Flow Metab. 2020 271678X20961854. PubMed PMC
Halpern A.R., Alas G.C., Chozinski T.J., Paredez A.R., Vaughan J.C. Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano. 2017;11:12677–12686. PubMed PMC
Hama H., Hioki H., Namiki K., Hoshida T., Kurokawa H., Ishidate F., Kaneko T., Akagi T., Saito T., Saido T., Miyawaki A. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 2015;18:1518–1529. PubMed
Hasan M.R., Herz J., Hermann D.M., Doeppner T.R. Visualization of macroscopic cerebral vessel anatomy--a new and reliable technique in mice. J. Neurosci. Methods. 2012;204:249–253. PubMed
He L., Liu Q., Hu T., Huang X., Zhang H., Tian X., Yan Y., Wang L., Huang Y., Miquerol L. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc. Res. 2016;109:419–430. PubMed PMC
Honig M.G., Hume R.I. Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 1989;12:340–341. PubMed
Hou B., Zhang D., Zhao S., Wei M., Yang Z., Wang S., Wang J., Zhang X., Liu B., Fan L. Scalable and DiI-compatible optical clearance of the mammalian brain. Front. Neuroanat. 2015;9:19. PubMed PMC
Hu N., Christensen D.A., Agrawal A.K., Beaumont C., Clark E.B., Hawkins J.A. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat. Rec. 2009;292:652–660. PubMed
Ivanovitch K., Temiño S., Torres M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. Elife. 2017;6:e30668. PubMed PMC
Jensen B., Boukens B.J.D., Postma A.V., Gunst Q.D., van den Hoff M.J.B., Moorman A.F.M., Wang T., Christoffels V.M. Identifying the evolutionary building blocks of the cardiac conduction system. PLoS One. 2012;7:e44231. PubMed PMC
Ivins S., Roberts C., Vernay B., Scambler P.J. Analysis of coronary vessels in cleared embryonic hearts. J. Vis. Exp. 2016:54800. PubMed PMC
Jensen K.H.R., Berg R.W. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci. Rep. 2016;6:32674. PubMed PMC
Jilani S.M., Murphy T.J., Thai S.N.M., Eichmann A., Alva J.A., Iruela-Arispe M.L. Selective binding of lectins to embryonic chicken vasculature. J. Histochem. Cytochem. 2003;51:597–604. PubMed
Junaid T.O., Bradley R.S., Lewis R.M., Aplin J.D., Johnstone E.D. Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Sci. Rep. 2017;7:4144. PubMed PMC
Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech. Histochem. 1995;70:220–233. PubMed
Kattan J., Dettman R.W., Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev. Dyn. 2004;230:34–43. PubMed
Ke M.-T., Fujimoto S., Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 2013;16:1154–1161. PubMed
Keller P.J., Dodt H.-U. Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. 2012;22:138–143. PubMed
Kennel P., Dichamp J., Barreau C., Guissard C., Teyssedre L., Rouquette J., Colombelli J., Lorsignol A., Casteilla L., Plouraboué F. From whole-organ imaging to in-silico blood flow modeling: a new multi-scale network analysis for revisiting tissue functional anatomy. PLoS Comput. Biol. 2020;16:e1007322. PubMed PMC
Kennel P., Teyssedre L., Colombelli J., Plouraboué F. Toward quantitative three-dimensional microvascular networks segmentation with multiview light-sheet fluorescence microscopy. JBO. 2018;23:086002. PubMed
Khoradmehr A., Mazaheri F., Anvari M., Tamadon A. A Simple Technique for Three-Dimensional Imaging and Segmentation of Brain Vasculature U sing Fast Free-of-Acrylamide Clearing Tissue in Murine. Cell J. 2019;21:49–56. doi: 10.22074/cellj.2019.5684. PubMed DOI PMC
Kidokoro H., Yonei-Tamura S., Tamura K., Schoenwolf G.C., Saijoh Y. The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension. Development. 2018;145:dev152488. PubMed PMC
Kim D.H., Ahn H.H., Sun W., Rhyu I.J. Electrophoretic tissue clearing and labeling methods for volume imaging of whole organs. AM. 2016;46:134–139.
Kim S.-Y., Cho J.H., Murray E., Bakh N., Choi H., Ohn K., Ruelas L., Hubbert A., McCue M., Vassallo S.L. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. U SA. 2015;112:E6274–E6283. PubMed PMC
Kirst C., Skriabine S., Vieites-Prado A., Topilko T., Bertin P., Gerschenfeld G., Verny F., Topilko P., Michalski N., Tessier-Lavigne M., Renier N. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell. 2020;180:780–795.e25. PubMed
Klingberg A., Hasenberg A., Ludwig-Portugall I., Medyukhina A., Männ L., Brenzel A., Engel D.R., Figge M.T., Kurts C., Gunzer M. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J. Am. Soc. Nephrol. 2017;28:452–459. PubMed PMC
Kolesová H., Bartoš M., Hsieh W.C., Olejníčková V., Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev Dyn. 2018;247:1018–1027. doi: 10.1002/dvdy.24637. PubMed DOI
Kolesova H., Capek M., Radochova B., Janacek J., Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell. Biol. 2016;146:141–152. PubMed
Kugler E., Plant K., Chico T., Armitage P. Enhancement and segmentation Workflow for the developing zebrafish vasculature. J. Imaging. 2019;5:14. PubMed PMC
Lagerweij T., Dusoswa S.A., Negrean A., Hendrikx E.M.L., de Vries H.E., Kole J., Garcia-Vallejo J.J., Mansvelder H.D., Vandertop W.P., Noske D.P. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis. 2017;20:533–546. PubMed PMC
Lankford K.L., Arroyo E.J., Nazimek K., Bryniarski K., Askenase P.W., Kocsis J.D. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One. 2018;13:e0190358. PubMed PMC
Lansford R., Rugonyi S. Follow me! A tale of avian heart development with comparisons to mammal heart development. J. Cardiovasc. Dev. Dis. 2020;7:8. PubMed PMC
Lapierre-Landry M., Kolesova H., Liu Y., Watanabe M., Jenkins M.W. Three-dimensional alignment of microvasculature and cardiomyocytes in the developing ventricle. Sci. Rep. 2020;10:14955. PubMed PMC
Lawson N.D., Weinstein B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002;248:307–318. PubMed
Le N.A., Kuo W., Müller B., Kurtcuoglu V., Spingler B. Crosslinkable polymeric contrast agent for high-resolution X-ray imaging of the vascular system. Chem. Commun. (Camb.) 2020;56:5885–5888. PubMed
Lee E., Choi J., Jo Y., Kim J.Y., Jang Y.J., Lee H.M., Kim S.Y., Lee H.-J., Cho K., Jung N. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 2016;6:18631. PubMed PMC
Lee H., Park J.-H., Seo I., Park S.-H., Kim S. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Dev. Biol. 2014;14:48. PubMed PMC
Lee S.-E., Nguyen C., Yoon J., Chang H.-J., Kim S., Kim C.H., Li D. Three-dimensional cardiomyocytes structure revealed by diffusion tensor imaging and its validation using a tissue-clearing technique. Sci. Rep. 2018;8:6640. PubMed PMC
Li G., Liu T., Tarokh A., Nie J., Guo L., Mara A., Holley S., Wong S.T. 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol. 2007;8:40. PubMed PMC
Li Y., Song Y., Zhao L., Gaidosh G., Laties A.M., Wen R. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat. Protoc. 2008;3:1703–1708. PubMed PMC
Li Jingjing, Miao L., Shieh D., Spiotto E., Li J., Zhou B., Paul A., Schwartz R.J., Firulli A.B., Singer H.A. Single-cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification. Cell Rep. 2016;15:158–170. PubMed PMC
Liebling M., Forouhar A.S., Gharib M., Fraser S.E., Dickinson M.E. Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. J. Biomed. Opt. 2005;10:054001. PubMed
Liu Y., Broberg M.C.G., Watanabe M., Rollins A.M., Jenkins M.W. SLIME: robust, high-speed 3D microvascular mapping. Sci. Rep. 2019;9:893. PubMed PMC
Liu A.K.L., Lai H.M., Chang R.C.-C., Gentleman S.M. Free of acrylamide sodium dodecyl sulphate (SDS)-based tissue clearing (FASTClear): a novel protocol of tissue clearing for three-dimensional visualization of human brain tissues. Neuropathol Appl Neurobiol. 2017;43:346–351. doi: 10.1111/nan.12361. PubMed DOI PMC
Lowe K.L., Finney B.A., Deppermann C., Hägerling R., Gazit S.L., Frampton J., Buckley C., Camerer E., Nieswandt B., Kiefer F., Watson S.P. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood. 2015;125:3769–3777. PubMed PMC
Lugo-Hernandez E., Squire A., Hagemann N., Brenzel A., Sardari M., Schlechter J., Sanchez-Mendoza E.H., Gunzer M., Faissner A., Hermann D.M. 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J. Cereb. Blood Flow Metab. 2017;37:3355–3367. PubMed PMC
Maeda K., Hata R., Hossmann K.A. Differences in the cerebrovascular anatomy of C57black/6 and SV129 mice. Neuroreport. 1998;9:1317–1319. PubMed
Matryba P., Kaczmarek L., Gołąb J. Advances in ex situ tissue optical clearing. Laser Photon. Rev. 2019;13:1800292.
Mellman K., Huisken J., Dinsmore C., Hoppe C., Stainier D.Y. Fibrillin-2b regulates endocardial morphogenesis in zebrafish. Dev. Biol. 2012;372:111–119. PubMed
Migliori B., Datta M.S., Dupre C., Apak M.C., Asano S., Gao R., Boyden E.S., Hermanson O., Yuste R., Tomer R. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol. 2018;16:57. PubMed PMC
Miller C.E., Thompson R.P., Bigelow M.R., Gittinger G., Trusk T.C., Sedmera D. Confocal imaging of the embryonic heart: how deep? Microscop. Microanal. 2005;11:216–223. PubMed
Miquerol L., Moreno-Rascon N., Beyer S., Dupays L., Meilhac S.M., Buckingham M.E., Franco D., Kelly R.G. Biphasic development of the mammalian ventricular conduction system. Circ. Res. 2010;107:153–161. PubMed
Mohan R.A., Mommersteeg M.T.M., Domínguez J.N., Choquet C., Wakker V., Vries C.de G., Boink G.J.J., Boukens B.J., Miquerol L., Verkerk A.O., Christoffels V.M. Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development. 2018;145:dev167361. PubMed
Molbay M., Kolabas Z.I., Todorov M.I., Ohn T.-L., Ertürk A. A guidebook for DISCO tissue clearing. Mol Syst Biol. 2021;17:e9807. doi: 10.15252/msb.20209807. PubMed DOI PMC
Murakami T.C., Mano T., Saikawa S., Horiguchi S.A., Shigeta D., Baba K., Sekiya H., Shimizu Y., Tanaka K.F., Kiyonari H. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 2018;21:625–637. PubMed
Murray E., Cho J.H., Goodwin D., Ku T., Swaney J., Kim S.-Y., Choi H., Park Y.-G., Park J.-Y., Hubbert A. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 2015;163:1500–1514. PubMed PMC
Nagyova M., Slovinska L., Blasko J., Grulova I., Kuricova M., Cigankova V., Harvanova D., Cizkova D. A comparative study of PKH67, DiI, and BrdU labeling techniques for tracing rat mesenchymal stem cells. In Vitro Cell. Dev. Biol. Anim. 2014;50:656–663. PubMed
Nanka O., Krizova P., Fikrle M., Tuma M., Blaha M., Grim M., Sedmera D. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat. Rec. (Hoboken) 2008;291:1187–1199. PubMed
Neckel P.H., Mattheus U., Hirt B., Just L., Mack A.F. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331. doi: 10.1038/srep34331. PubMed DOI PMC
Nehrhoff I., Bocancea D., Vaquero J., Vaquero J.J., Ripoll J., Desco M., Gómez-Gaviro M.V. 3D imaging in CUBIC-cleared mouse heart tissue: going deeper. Biomed. Opt. Express. 2016;7:3716–3720. PubMed PMC
Nguyen C.T., Lu Q., Wang Y., Chen J.-N. Zebrafish as a model for cardiovascular development and disease. Drug Discov. Today Dis. Models. 2008;5:135–140. PubMed PMC
Nojima S., Susaki E.A., Yoshida K., Takemoto H., Tsujimura N., Iijima S., Takachi K., Nakahara Y., Tahara S., Ohshima K. CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci. Rep. 2017;7:9269. PubMed PMC
Olejnickova V., Sankova B., Sedmera D., Janacek J. Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front. Physiol. 2018;9:1876. PubMed PMC
Packard R.R.S., Baek K.I., Beebe T., Jen N., Ding Yichen, Shi F., Fei P., Kang B.J., Chen P.-H., Gau J. Automated segmentation of light-sheet fluorescent imaging to characterize experimental doxorubicin-induced cardiac injury and repair. Sci. Rep. 2017;7:8603. PubMed PMC
Pan C., Cai R., Quacquarelli F.P., Ghasemigharagoz A., Lourbopoulos A., Matryba P., Plesnila N., Dichgans M., Hellal F., Ertürk A. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods. 2016;13:859–867. PubMed
Park O.K., Kwak J., Jung Y.J., Kim Y.H., Hong H.-S., Hwang B.J., Kwon S.-H., Kee Y. 3D light-sheet fluorescence microscopy of cranial neurons and vasculature during zebrafish embryogenesis. Mol. Cells. 2015;38:975–981. PubMed PMC
Perbellini F., Liu A.K.L., Watson S.A., Bardi I., Rothery S.M., Terracciano C.M. Free-of-Acrylamide SDS-based Tissue Clearing (FASTClear) for three dimensional visualization of myocardial tissue. Sci. Rep. 2017;7:5188. PubMed PMC
Perdikaris P., Grinberg L., Karniadakis G.E. Multiscale modeling and simulation of brain blood flow. Phys. Fluids. 2016;28:021304. PubMed PMC
Plitman Mayo R. Advances in human placental biomechanics. Comput. Struct. Biotechnol. J. 2018;16:298–306. PubMed PMC
Proweller A., Wright A.C., Horng D., Cheng L., Lu M.M., Lepore J.J., Pear W.S., Parmacek M.S. Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc. Natl. Acad. Sci. U S A. 2007;104:16275–16280. PubMed PMC
Qi Y., Yu T., Xu J., Wan P., Ma Y., Zhu J., Li Y., Gong H., Luo Q., Zhu D. FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci. Adv. 2019;5:eaau8355. PubMed PMC
Red-Horse K., Ueno H., Weissman I.L., Krasnow M.A. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553. PubMed PMC
Renier N., Adams E.L., Kirst C., Wu Z., Azevedo R., Kohl J., Autry A.E., Kadiri L., Umadevi Venkataraju K., Zhou Y. Mapping of brain activity by automated volume Analysis of immediate early genes. Cell. 2016;165:1789–1802. PubMed PMC
Richardson D.S., Lichtman J.W. Clarifying tissue clearing. Cell. 2015;162:246–257. PubMed PMC
Sandell L., Inman K., Trainor P. DAPI staining of whole-mount mouse embryos or fetal organs. Cold Spring Harb. Protoc. 2018;2018:prot094029. PubMed
Sarkar S., Schmued L. In vivo administration of fluorescent dextrans for the specific and sensitive localization of brain vascular pericytes and their characterization in normal and neurotoxin exposed brains. Neurotoxicology. 2012;33:436–443. PubMed
Sasse P., Malan D., Fleischmann M., Roell W., Gustafsson E., Bostani T., Fan Y., Kolbe T., Breitbach M., Addicks K. Perlecan is critical for heart stability. Cardiovasc. Res. 2008;80:435–444. PubMed
Schaad L., Hlushchuk R., Barré S., Gianni-Barrera R., Haberthür D., Banfi A., Djonov V. Correlative imaging of the murine hind limb vasculature and muscle tissue by MicroCT and light microscopy. Sci. Rep. 2017;7:41842. PubMed PMC
Schambach S.J., zag Bag S., Groden C., Schilling L., Brockmann M.A. Vascular imaging in small rodents using micro-CT. Methods. 2010;50:26–35. PubMed
Schürmann C., Gremse F., Jo H., Kiessling F., Brandes R.P. Micro-CT technique is well suited for documentation of remodeling processes in murine carotid arteries. PLoS One. 2015;10:e0130374. PubMed PMC
Schwarz M.K., Scherbarth A., Sprengel R., Engelhardt J., Theer P., Giese G. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One. 2015;10:e0124650. PubMed PMC
Sedmera D., Misek I., Klima M., Thompson R.P. Heart development in the spotted dolphin (Stenella attenuata) Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2003;273:687–699. PubMed
Sereti K.-I., Nguyen N.B., Kamran P., Zhao P., Ranjbarvaziri S., Park S., Sabri S., Engel J.L., Sung K., Kulkarni R.P. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat. Commun. 2018;9:754. PubMed PMC
Shaikh Qureshi W.M., Miao L., Shieh D., Li J., Lu Y., Hu S., Barroso M., Mazurkiewicz J., Wu M. Imaging cleared embryonic and postnatal hearts at single-cell resolution. J. Vis. Exp. 2016;7:54303. PubMed PMC
Shan T., Zhao Y., Jiang S., Jiang H. In-vivo hemodynamic imaging of acute prenatal ethanol exposure in fetal brain by photoacoustic tomography. J. Biophotonics. 2020;13:e201960161. PubMed
Sharma B., Chang A., Red-Horse K. Coronary artery development: progenitor cells and differentiation pathways. Annu. Rev. Physiol. 2017;79:1–19. PubMed PMC
Sharpe J., Ahlgren U., Perry P., Hill B., Ross A., Hecksher-Sørensen J., Baldock R., Davidson D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science. 2002;296:541–545. PubMed
Silvestri L., Costantini I., Sacconi L., Pavone F.S. Clearing of fixed tissue: a review from a microscopist’s perspective. JBO. 2016;21:081205. PubMed
Sizarov A., Ya J., de Boer B.A., Lamers W.H., Christoffels V.M., Moorman A.F.M. formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation. 2011;123:1125–1135. PubMed
Stainier D., Fouquet B., Chen J.-N., Warren K.S., Weinstein B.M., Meiler S.E., Mohideen M., Neuhauss S., Solnica-Krezel L., Schier A.F. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996;123:285–292. PubMed
Stephens D.J., Allan V.J. Light microscopy techniques for live cell imaging. Science. 2003;300:82–86. PubMed
Sung K., Ding Y., Ma J., Chen H., Huang V., Cheng M., Yang C.F., Kim J.T., Eguchi D., Di Carlo D. Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Sci. Rep. 2016;6:30736. PubMed PMC
Susaki E.A., Tainaka K., Perrin D., Kishino F., Tawara T., Watanabe T.M., Yokoyama C., Onoe H., Eguchi M., Yamaguchi S. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726–739. PubMed
Susaki E.A., Tainaka K., Perrin D., Yukinaga H., Kuno A., Ueda H.R. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10:1709–1727. doi: 10.1038/nprot.2015.085. PubMed DOI
Tainaka K., Kubota S.I., Suyama T.Q., Susaki E.A., Perrin D., Ukai-Tadenuma M., Ukai H., Ueda H.R. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159:911–924. PubMed
Tainaka K., Kuno A., Kubota S.I., Murakami T., Ueda H.R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 2016;32:713–741. PubMed
Tarnowski B.I., Spinale F.G., Nicholson J.H. DAPI as a useful stain for nuclear quantitation. Biotech. Histochem. 1991;66:297–302. PubMed
Taylor J.M., Nelson C.J., Bruton F.A., Baghbadrani A.K., Buckley C., Tucker C.S., Rossi A.G., Mullins J.J., Denvir M.A. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart. Nat. Commun. 2019;10:1–15. PubMed PMC
Tian T., Yang Z., Li X. Tissue clearing technique: recent progress and biomedical applications. J. Anat. 2021;238:489–507. PubMed PMC
Tillberg P.W., Chen F., Piatkevich K.D., Zhao Y., Yu C.-C., Jay), English B.P., Gao L., Martorell A., Suk H.-J. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 2016;34:987–992. PubMed PMC
Todorov M.I., Paetzold J.C., Schoppe O., Tetteh G., Shit S., Efremov V., Todorov-Völgyi K., Düring M., Dichgans M., Piraud M. Machine learning analysis of whole mouse brain vasculature. Nat. Methods. 2020;17:442–449. PubMed PMC
Tomer R., Ye L., Hsueh B., Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 2014;9:1682–1697. PubMed PMC
Traver D., Paw B.H., Poss K.D., Penberthy W.T., Lin S., Zon L.I. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 2003;4:1238–1246. PubMed
Treweek J.B., Chan K.Y., Flytzanis N.C., Yang B., Deverman B.E., Greenbaum A., Lignell A., Xiao C., Cai L., Ladinsky M.S. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 2015;10:1860–1896. PubMed PMC
Truong T.V., Supatto W., Koos D.S., Choi J.M., Fraser S.E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods. 2011;8:757–760. PubMed
Tsai P.S., Kaufhold J.P., Blinder P., Friedman B., Drew P.J., Karten H.J., Lyden P.D., Kleinfeld D. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci. 2009;29:14553–14570. doi: 10.1523/JNEUROSCI.3287-09.2009. PubMed DOI PMC
Ueda H.R., Ertürk A., Chung K., Gradinaru V., Chédotal A., Tomancak P., Keller P.J. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 2020;21:61–79. PubMed PMC
van Eif V.W.W., Devalla H.D., Boink G.J.J., Christoffels V.M. Transcriptional regulation of the cardiac conduction system. Nat. Rev. Cardiol. 2018;15:617–630. PubMed
van Zandvoort M., Engels W., Douma K., Beckers L., Oude Egbrink M., Daemen M., Slaaf D.W. Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study. J. Vasc. Res. 2004;41:54–63. PubMed
Veith A., B Baker A. A rapid, nondestructive method for vascular network visualization. Biotechniques. 2020;69:443–449. PubMed PMC
Vigouroux R.J., Belle M., Chédotal A. Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol. Brain. 2017;10:33. PubMed PMC
Vrbacky M., Kovalcikova J., Chawengsaksophak K., Beck I.M., Mracek T., Nuskova H., Sedmera D., Papousek F., Kolar F., Sobol M. Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Hum. Mol. Genet. 2016;25:4674–4685. PubMed
Walter T., Shattuck D.W., Baldock R., Bastin M.E., Carpenter A.E., Duce S., Ellenberg J., Fraser A., Hamilton N., Pieper S. Visualization of image data from cells to organisms. Nat. Methods. 2010;7:S26–S41. PubMed PMC
Wang D., Wang Y., Wang W., Luo D., Chitgupi U., Geng J., Zhou Y., Wang L., Lovell J.F., Xia J. Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed. Opt. Express. 2016;8:112–123. PubMed PMC
Wang Y., Dur O., Patrick M.J., Tinney J.P., Tobita K., Keller B.B., Pekkan K. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann. Biomed. Eng. 2009;37:1069–1081. PubMed
Wang Z., Zhang Jie, Fan G., Zhao H., Wang X., Zhang Jing, Zhang P., Wang W. Imaging transparent intact cardiac tissue with single-cell resolution. Biomed. Opt. Express. 2018;9:423. PubMed PMC
Wassie A.T., Zhao Y., Boyden E.S. Expansion microscopy: principles and uses in biological research. Nat. Methods. 2019;16:33–41. PubMed PMC
Weninger W.J., Geyer S.H., Mohun T.J., Rasskin-Gutman D., Matsui T., Ribeiro I., Costa L.da F., Izpisúa-Belmonte J.C., Müller G.B. High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat. Embryol. 2006;211:213–221. PubMed
Wu Z., Rademakers T., Kiessling F., Vogt M., Westein E., Weber C., Megens R.T.A., van Zandvoort M. Multi-photon microscopy in cardiovascular research. Methods. 2017;130:79–89. PubMed
Xian Z., Wang X., Yan S., Yang D., Chen J., Peng C. Main coronary vessel segmentation using deep learning in smart medical. Math. Probl. Eng. 2020:8858344. doi: 10.1155/2020/8858344. DOI
Xu H., Tong Z., Ye Q., Sun T., Hong Z., Zhang L., Bortnick A., Cho S., Beuzer P., Axelrod J. Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proc. Natl. Acad. Sci. U S A. 2019;116:18423–18428. PubMed PMC
Xu J., Ma Y., Yu T., Zhu D. Quantitative assessment of optical clearing methods in various intact mouse organs. J. Biophotonics. 2019;12:e201800134. doi: 10.1002/jbio.201800134. PubMed DOI
Yalcin H.C., Shekhar A., McQuinn T.C., Butcher J.T. Hemodynamic patterning of the avian atrioventricular valve. Dev. Dyn. 2011;240:23–35. PubMed PMC
Yang S., Kweon J., Roh J.-H., Lee J.-H., Kang H., Park L.-J., Kim D.J., Yang H., Hur J., Kang D.-Y. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 2019;9:16897. PubMed PMC
Yang B., Treweek J.B., Kulkarni R.P., Deverman B.E., Chen C.-K., Lubeck E., Shah S., Cai L., Gradinaru V. Single-Cell Phenotyping within Transparent Intact Tissue Through Whole-Body Clearing. Cell. 2014;158:945–958. doi: 10.1016/j.cell.2014.07.017. PubMed DOI PMC
Yokoyama T., Lee J.-K., Miwa K., Opthof T., Tomoyama S., Nakanishi H., Yoshida A., Yasui H., Iida T., Miyagawa S. Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS One. 2017;12:e0182072. PubMed PMC
Yue Y., Zong W., Li X., Li J., Zhang Y., Wu R., Liu Y., Cui J., Wang Q., Bian Y. Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. PLoS One. 2020;15:e0226791. PubMed
Zagorchev L., Oses P., Zhuang Z.W., Moodie K., Mulligan-Kehoe M.J., Simons M., Couffinhal T. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2010;2:7. PubMed PMC
Zhang H., Chalothorn D., Faber J.E. Collateral vessels have unique endothelial and smooth muscle cell phenotypes. Int. J. Mol. Sci. 2019;20:3608. PubMed PMC
Zhang Z.G., Zhang L., Tsang W., Soltanian-Zadeh H., Morris D., Zhang R., Goussev A., Powers C., Yeich T., Chopp M. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2002;22:379–392. PubMed
Zhao X., Wu J., Gray C.D., McGregor K., Rossi A.G., Morrison H., Jansen M.A., Gray G.A. Optical projection tomography permits efficient assessment of infarct volume in the murine heart postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H702–H710. PubMed PMC
Zhou B., Ma Q., Kong S.W., Hu Y., Campbell P.H., McGowan F.X., Ackerman K.G., Wu B., Zhou B., Tevosian S.G., Pu W.T. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Invest. 2009;119:1462–1476. PubMed PMC
Zhu J., Yu T., Li Y., Xu J., Qi Y., Yao Y., Ma Y., Wan P., Chen Z., Li X. MACS: rapid aqueous clearing system for 3D mapping of intact organs. Adv. Sci. (Weinh) 2020;7:1903185. PubMed PMC
Zucker, R.M., Hunter, S., Rogers, J.M., 1998. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos. Cytometry 33, 348–354. 10.1002/(sici)1097-0320(19981101)33:3%3C348::aid-cyto9%3E3.0.co;2-c. PubMed DOI