Three-dimensional alignment of microvasculature and cardiomyocytes in the developing ventricle
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL126747
NHLBI NIH HHS - United States
S10 OD024996
NIH HHS - United States
OT2 OD025307
NIH HHS - United States
R01HL126747
NIH HHS - United States
20POST35220051
American Heart Association-American Stroke Association - United States
PubMed
32917915
PubMed Central
PMC7486945
DOI
10.1038/s41598-020-71816-y
PII: 10.1038/s41598-020-71816-y
Knihovny.cz E-zdroje
- MeSH
- Coturnix embryologie MeSH
- kardiomyocyty metabolismus MeSH
- koronární cévy embryologie MeSH
- mikrocévy embryologie MeSH
- modely kardiovaskulární * MeSH
- srdeční komory embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
While major coronary artery development and pathologies affecting them have been extensively studied, understanding the development and organization of the coronary microvasculature beyond the earliest developmental stages requires new tools. Without techniques to image the coronary microvasculature over the whole heart, it is likely we are underestimating the microvasculature's impact on normal development and diseases. We present a new imaging and analysis toolset to visualize the coronary microvasculature in intact embryonic hearts and quantify vessel organization. The fluorescent dyes DiI and DAPI were used to stain the coronary vasculature and cardiomyocyte nuclei in quail embryo hearts during rapid growth and morphogenesis of the left ventricular wall. Vessel and cardiomyocytes orientation were automatically extracted and quantified, and vessel density was calculated. The coronary microvasculature was found to follow the known helical organization of cardiomyocytes in the ventricular wall. Vessel density in the left ventricle did not change during and after compaction. This quantitative and automated approach will enable future cohort studies to understand the microvasculature's role in diseases such as hypertrophic cardiomyopathy where misalignment of cardiomyocytes has been observed in utero.
Department of Pediatrics School of Medicine Case Western Reserve University Cleveland USA
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528. PubMed
Roger VL, et al. Trends in the incidence and survival of patients with hospitalized myocardial infarction, Olmsted County, Minnesota, 1979 to 1994. Ann. Intern. Med. 2002;136:341. PubMed
Hauser M. Congenital anomalies of the coronary arteries. Heart. 2005;91:1240–1245. PubMed PMC
Kasznica J, Ursell PC, Blanc WA, Gersony WM. Abnormalities of the coronary circulation in pulmonary atresia and intact ventricular septum. Am. Heart J. 1987;114:1415–1420. PubMed
Ozyilmaz I, Ergul Y, Guzeltas A, Odemis E. Possible link between right ventricular coronary sinusoids and noncompaction sinusoids in pulmonary atresia with intact ventricular septum patients that later develop left ventricular noncompaction. Med. Hypotheses. 2014;83:53–55. PubMed
Rutz T, de Marchi SF, Schwerzmann M, Vogel R, Seiler C. Right ventricular absolute myocardial blood flow in complex congenital heart disease. Heart. 2010;96:1056–1062. PubMed
Schaan CW, et al. Functional capacity in congenital heart disease: a systematic review and meta-analysis. Arq. Bras. Cardiol. 2017;109:357–367. PubMed PMC
Sharma B, Chang A, Red-Horse K. Coronary artery development: progenitor cells and differentiation pathways. Annu. Rev. Physiol. 2017;79:1–19. PubMed PMC
Kapuria S, Yoshida T, Lien C-L. Coronary vasculature in cardiac development and regeneration. J. Cardiovasc. Dev. Dis. 2018;5:59. PubMed PMC
He L, Lui KO, Zhou B. The formation of coronary vessels in cardiac development and disease. Cold Spring Harb. Perspect. Biol. 2019 doi: 10.1101/cshperspect.a037168. PubMed DOI PMC
Watanabe M, et al. Cardiac vasculature: development and pathology. Vasculogenesis Angiogenesis Embryonic Dev. Regener. Med. 2011 doi: 10.5772/27391. DOI
Tomanek RJ. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat. Rec. (Hoboken) 2016;299:25–41. PubMed PMC
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553. PubMed PMC
Naderi S. Microvascular coronary dysfunction—an overview. Curr. Atheroscler. Rep. 2018;20:7. PubMed
Berry, P. C. Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice. 6 (2014).
Sato Y, et al. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE. 2010;5:e12674. PubMed PMC
Kolesová H, Bartoš M, Hsieh WC, Olejníčková V, Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 2018;247:1018–1027. PubMed
Winkler F, et al. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci. Rep. 2018;8:1–11. PubMed PMC
Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev. Dyn. 2004;230:34–43. PubMed
Wu B, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096. PubMed PMC
Arita Y, et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 2014;5:1–14. PubMed PMC
Arima Y, et al. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 2012;3:1267. PubMed
Liu Y, Broberg MC, Watanabe M, Rollins AM, Jenkins MW. SLIME: robust, high-speed 3D microvascular mapping. Sci. Rep. 2019;9:893. PubMed PMC
Liu X, et al. Three-dimensional visualization of coronary microvasculature in rats with myocardial infarction. Microvasc. Res. 2020;130:103990. PubMed
Moy AJ, Lo PC, Choi B. High-resolution visualization of mouse cardiac microvasculature using optical histology. Biomed. Opt. Express. 2014;5:69–77. PubMed PMC
Nanka O, et al. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat. Rec. 2008;291:1187–1199. PubMed
John-Michael A, et al. Four-dimensional microvascular analysis reveals that regenerative angiogenesis in ischemic muscle produces a flawed microcirculation. Circ. Res. 2017;120:1453–1465. PubMed
Bensley JG, Matteo RD, Harding R, Black MJ. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 2016;6:1–10. PubMed PMC
Streeter DD, Bassett DL. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat. Rec. 1966;155:503–511.
Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 1969;24:339–347. PubMed
Sands GB, et al. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 2005;67:227–239. PubMed
Garcia-Canadilla P, et al. Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth. J. Anat. 2019;235:962–976. PubMed PMC
Nielles-Vallespin S, et al. Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J. Am. Coll. Cardiol. 2017;69:661–676. PubMed PMC
Rohmer D, Sitek A, Gullberg GT. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Investig. Radiol. 2007;42:777. PubMed
Smerup M, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat. Rec. 2009;292:1–11. PubMed
McKenna WJ, Stewart JT, Nihoyannopoulos P, McGinty F, Davies MJ. Hypertrophic cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. Heart. 1990;63:287–290. PubMed PMC
Finocchiaro G, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J. Am. Coll. Cardiol. 2016;67:2108–2115. PubMed
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front. Physiol. 2014;5:287. PubMed PMC
Sedmera D, Pexieder T, Hu N, Clark EB. Developmental changes in the myocardial architecture of the chick. Anat. Rec. 1997;248:421–432. PubMed
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. PubMed
Liu, Y., Jenkins, M. W., Watanabe, M. & Rollins, A. M. A simple optical clearing method for investigating molecular distribution in intact embryonic tissues (Conference Presentation). In Diagnosis and Treatment of Diseases in the Breast and Reproductive System IV vol. 10472 104720P (International Society for Optics and Photonics, 2018).
Jammalamadaka SR, Sengupta A. Topics in Circular Statistics. Singapore: World Scientific; 2001.
Marquez JP. Fourier analysis and automated measurement of cell and fiber angular orientation distributions. Int. J. Solids Struct. 2006;43:6413–6423.
Waldo KL, Willner W, Kirby ML. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 1990;188:109–120. PubMed
Vrancken Peeters M, et al. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev. Dyn. 1997;208:338–348. PubMed
Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation. 2018;137:71–87. PubMed
Tomanek RJ, Hu N, Phan B, Clark EB. Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc. Res. 1999;41:663–671. PubMed
Martinsen BJ. Reference guide to the stages of chick heart embryology. Dev. Dyn. 2005;233:1217–1237. PubMed
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–284. PubMed
Dyer L, Pi X, Patterson C. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev. Biol. 2014;395:111–119. PubMed PMC
Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium development and the role of connexins in the human fetal heart. Sci. Rep. 2017;7:12272. PubMed PMC
Irino S, Ono T, Shimohara Y. Microvascular architecture of the rabbit ventricular walls: a scanning electron microscopic study of corrosion casts. Scan. Electron. Microsc. 1982;4:1785–1792. PubMed
Ono T, Shimohara Y, Okada K, Irino S. Scanning electron microscopic studies on microvascular architecture of human coronary vessels by corrosion casts: normal and focal necrosis. Scan. Electron. Microsc. 1986;1:263–270. PubMed
Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development. 2001;128:3359–3370. PubMed
Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech. Dev. 2001;106:133–136. PubMed
Elkerton JS, Xu Y, Pickering JG, Ward AD. Differentiation of arterioles from venules in mouse histology images using machine learning. J. Med. Imaging. 2017;4:021104. PubMed PMC
Li Y, et al. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat. Protoc. 2008;3:1703–1708. PubMed PMC
Ainsworth SJ, Stanley RL, Evans DJR. Developmental stages of the Japanese quail. J. Anat. 2010;216:3–15. PubMed PMC
Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J. Morphol. 1951;88:49–92. PubMed