Three-dimensional alignment of microvasculature and cardiomyocytes in the developing ventricle

. 2020 Sep 11 ; 10 (1) : 14955. [epub] 20200911

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32917915

Grantová podpora
R01 HL126747 NHLBI NIH HHS - United States
S10 OD024996 NIH HHS - United States
OT2 OD025307 NIH HHS - United States
R01HL126747 NIH HHS - United States
20POST35220051 American Heart Association-American Stroke Association - United States

Odkazy

PubMed 32917915
PubMed Central PMC7486945
DOI 10.1038/s41598-020-71816-y
PII: 10.1038/s41598-020-71816-y
Knihovny.cz E-zdroje

While major coronary artery development and pathologies affecting them have been extensively studied, understanding the development and organization of the coronary microvasculature beyond the earliest developmental stages requires new tools. Without techniques to image the coronary microvasculature over the whole heart, it is likely we are underestimating the microvasculature's impact on normal development and diseases. We present a new imaging and analysis toolset to visualize the coronary microvasculature in intact embryonic hearts and quantify vessel organization. The fluorescent dyes DiI and DAPI were used to stain the coronary vasculature and cardiomyocyte nuclei in quail embryo hearts during rapid growth and morphogenesis of the left ventricular wall. Vessel and cardiomyocytes orientation were automatically extracted and quantified, and vessel density was calculated. The coronary microvasculature was found to follow the known helical organization of cardiomyocytes in the ventricular wall. Vessel density in the left ventricle did not change during and after compaction. This quantitative and automated approach will enable future cohort studies to understand the microvasculature's role in diseases such as hypertrophic cardiomyopathy where misalignment of cardiomyocytes has been observed in utero.

Zobrazit více v PubMed

Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528. PubMed

Roger VL, et al. Trends in the incidence and survival of patients with hospitalized myocardial infarction, Olmsted County, Minnesota, 1979 to 1994. Ann. Intern. Med. 2002;136:341. PubMed

Hauser M. Congenital anomalies of the coronary arteries. Heart. 2005;91:1240–1245. PubMed PMC

Kasznica J, Ursell PC, Blanc WA, Gersony WM. Abnormalities of the coronary circulation in pulmonary atresia and intact ventricular septum. Am. Heart J. 1987;114:1415–1420. PubMed

Ozyilmaz I, Ergul Y, Guzeltas A, Odemis E. Possible link between right ventricular coronary sinusoids and noncompaction sinusoids in pulmonary atresia with intact ventricular septum patients that later develop left ventricular noncompaction. Med. Hypotheses. 2014;83:53–55. PubMed

Rutz T, de Marchi SF, Schwerzmann M, Vogel R, Seiler C. Right ventricular absolute myocardial blood flow in complex congenital heart disease. Heart. 2010;96:1056–1062. PubMed

Schaan CW, et al. Functional capacity in congenital heart disease: a systematic review and meta-analysis. Arq. Bras. Cardiol. 2017;109:357–367. PubMed PMC

Sharma B, Chang A, Red-Horse K. Coronary artery development: progenitor cells and differentiation pathways. Annu. Rev. Physiol. 2017;79:1–19. PubMed PMC

Kapuria S, Yoshida T, Lien C-L. Coronary vasculature in cardiac development and regeneration. J. Cardiovasc. Dev. Dis. 2018;5:59. PubMed PMC

He L, Lui KO, Zhou B. The formation of coronary vessels in cardiac development and disease. Cold Spring Harb. Perspect. Biol. 2019 doi: 10.1101/cshperspect.a037168. PubMed DOI PMC

Watanabe M, et al. Cardiac vasculature: development and pathology. Vasculogenesis Angiogenesis Embryonic Dev. Regener. Med. 2011 doi: 10.5772/27391. DOI

Tomanek RJ. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat. Rec. (Hoboken) 2016;299:25–41. PubMed PMC

Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553. PubMed PMC

Naderi S. Microvascular coronary dysfunction—an overview. Curr. Atheroscler. Rep. 2018;20:7. PubMed

Berry, P. C. Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice. 6 (2014).

Sato Y, et al. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE. 2010;5:e12674. PubMed PMC

Kolesová H, Bartoš M, Hsieh WC, Olejníčková V, Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 2018;247:1018–1027. PubMed

Winkler F, et al. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci. Rep. 2018;8:1–11. PubMed PMC

Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev. Dyn. 2004;230:34–43. PubMed

Wu B, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096. PubMed PMC

Arita Y, et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 2014;5:1–14. PubMed PMC

Arima Y, et al. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 2012;3:1267. PubMed

Liu Y, Broberg MC, Watanabe M, Rollins AM, Jenkins MW. SLIME: robust, high-speed 3D microvascular mapping. Sci. Rep. 2019;9:893. PubMed PMC

Liu X, et al. Three-dimensional visualization of coronary microvasculature in rats with myocardial infarction. Microvasc. Res. 2020;130:103990. PubMed

Moy AJ, Lo PC, Choi B. High-resolution visualization of mouse cardiac microvasculature using optical histology. Biomed. Opt. Express. 2014;5:69–77. PubMed PMC

Nanka O, et al. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat. Rec. 2008;291:1187–1199. PubMed

John-Michael A, et al. Four-dimensional microvascular analysis reveals that regenerative angiogenesis in ischemic muscle produces a flawed microcirculation. Circ. Res. 2017;120:1453–1465. PubMed

Bensley JG, Matteo RD, Harding R, Black MJ. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 2016;6:1–10. PubMed PMC

Streeter DD, Bassett DL. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat. Rec. 1966;155:503–511.

Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 1969;24:339–347. PubMed

Sands GB, et al. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 2005;67:227–239. PubMed

Garcia-Canadilla P, et al. Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth. J. Anat. 2019;235:962–976. PubMed PMC

Nielles-Vallespin S, et al. Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J. Am. Coll. Cardiol. 2017;69:661–676. PubMed PMC

Rohmer D, Sitek A, Gullberg GT. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Investig. Radiol. 2007;42:777. PubMed

Smerup M, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat. Rec. 2009;292:1–11. PubMed

McKenna WJ, Stewart JT, Nihoyannopoulos P, McGinty F, Davies MJ. Hypertrophic cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. Heart. 1990;63:287–290. PubMed PMC

Finocchiaro G, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J. Am. Coll. Cardiol. 2016;67:2108–2115. PubMed

Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front. Physiol. 2014;5:287. PubMed PMC

Sedmera D, Pexieder T, Hu N, Clark EB. Developmental changes in the myocardial architecture of the chick. Anat. Rec. 1997;248:421–432. PubMed

Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. PubMed

Liu, Y., Jenkins, M. W., Watanabe, M. & Rollins, A. M. A simple optical clearing method for investigating molecular distribution in intact embryonic tissues (Conference Presentation). In Diagnosis and Treatment of Diseases in the Breast and Reproductive System IV vol. 10472 104720P (International Society for Optics and Photonics, 2018).

Jammalamadaka SR, Sengupta A. Topics in Circular Statistics. Singapore: World Scientific; 2001.

Marquez JP. Fourier analysis and automated measurement of cell and fiber angular orientation distributions. Int. J. Solids Struct. 2006;43:6413–6423.

Waldo KL, Willner W, Kirby ML. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 1990;188:109–120. PubMed

Vrancken Peeters M, et al. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev. Dyn. 1997;208:338–348. PubMed

Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation. 2018;137:71–87. PubMed

Tomanek RJ, Hu N, Phan B, Clark EB. Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc. Res. 1999;41:663–671. PubMed

Martinsen BJ. Reference guide to the stages of chick heart embryology. Dev. Dyn. 2005;233:1217–1237. PubMed

Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–284. PubMed

Dyer L, Pi X, Patterson C. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev. Biol. 2014;395:111–119. PubMed PMC

Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium development and the role of connexins in the human fetal heart. Sci. Rep. 2017;7:12272. PubMed PMC

Irino S, Ono T, Shimohara Y. Microvascular architecture of the rabbit ventricular walls: a scanning electron microscopic study of corrosion casts. Scan. Electron. Microsc. 1982;4:1785–1792. PubMed

Ono T, Shimohara Y, Okada K, Irino S. Scanning electron microscopic studies on microvascular architecture of human coronary vessels by corrosion casts: normal and focal necrosis. Scan. Electron. Microsc. 1986;1:263–270. PubMed

Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development. 2001;128:3359–3370. PubMed

Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech. Dev. 2001;106:133–136. PubMed

Elkerton JS, Xu Y, Pickering JG, Ward AD. Differentiation of arterioles from venules in mouse histology images using machine learning. J. Med. Imaging. 2017;4:021104. PubMed PMC

Li Y, et al. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat. Protoc. 2008;3:1703–1708. PubMed PMC

Ainsworth SJ, Stanley RL, Evans DJR. Developmental stages of the Japanese quail. J. Anat. 2010;216:3–15. PubMed PMC

Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J. Morphol. 1951;88:49–92. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tissue clearing and imaging methods for cardiovascular development

. 2021 Apr 23 ; 24 (4) : 102387. [epub] 20210401

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace