Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 DC010362
NIDCD NIH HHS - United States
R03 DC013655
NIDCD NIH HHS - United States
PubMed
27917898
PubMed Central
PMC5137136
DOI
10.1038/srep38253
PII: srep38253
Knihovny.cz E-zdroje
- MeSH
- delece genu MeSH
- myši transgenní MeSH
- myši MeSH
- neurogeneze fyziologie MeSH
- sakulus a utrikulus cytologie embryologie MeSH
- transkripční faktory SOXB1 genetika metabolismus MeSH
- vláskové buňky cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Sox2 protein, mouse MeSH Prohlížeč
- transkripční faktory SOXB1 MeSH
The role of Sox2 in neurosensory development is not yet fully understood. Using mice with conditional Islet1-cre mediated deletion of Sox2, we explored the function of Sox2 in neurosensory development in a model with limited cell type diversification, the inner ear. In Sox2 conditional mutants, neurons initially appear to form normally, whereas late- differentiating neurons of the cochlear apex never form. Variable numbers of hair cells differentiate in the utricle, saccule, and cochlear base but sensory epithelium formation is completely absent in the apex and all three cristae of the semicircular canal ampullae. Hair cells differentiate only in sensory epithelia known or proposed to have a lineage relationship of neurons and hair cells. All initially formed neurons lacking hair cell targets die by apoptosis days after they project toward non-existing epithelia. Therefore, late neuronal development depends directly on Sox2 for differentiation and on the survival of hair cells, possibly derived from common neurosensory precursors.
Department of Biology University of Iowa Iowa City IA USA
Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Kondoh H. & Lovell-Badge R. Sox2: Biology and Role in Development and Disease. 3–15 (Elsevier, 2016).
Reiprich S. & Wegner M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res 359, 111–124 (2015). PubMed
Telley L. et al.. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016). PubMed
Fritzsch B., Jahan I., Pan N. & Elliott K. L. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 359, 295–313 (2015). PubMed PMC
Fritzsch B., Pan N., Jahan I. & Elliott K. L. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 368, 7–24 (2015). PubMed PMC
Dabdoub A., Fritzsch B., Popper A. N. & Fay R. R. The Primary Auditory Neurons of the Mammalian Cochlea. Vol. 52 (Springer, 2016).
Ma Q., Anderson D. J. & Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1, 129–143 (2000). PubMed PMC
Matei V. et al.. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics 234, 633–650 (2005). PubMed PMC
Raft S. & Groves A. K. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res, 359, 315–32 (2014). PubMed PMC
Yang T., Kersigo J., Jahan I., Pan N. & Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278, 21–33 (2011). PubMed PMC
Mak A. C., Szeto I. Y., Fritzsch B. & Cheah K. S. Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr Patterns 9, 444–453 (2009). PubMed PMC
Gu R. et al.. Lineage tracing of Sox2− expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Developmental Biology 414, 72–84 (2016). PubMed PMC
Neves J., Uchikawa M., Bigas A. & Giraldez F. The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS one 7, e30871 (2012). PubMed PMC
Jahan I., Pan N., Kersigo J. & Fritzsch B. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PloS one 5, e11661 (2010). PubMed PMC
Evsen L., Sugahara S., Uchikawa M., Kondoh H. & Wu D. K. Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by Neurogenin1 and Neurod1. J Neurosci 33, 3879–3890 (2013). PubMed PMC
Huang M. et al.. Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Developmental Dynamics 237, 3305–3312 (2008). PubMed PMC
Radde-Gallwitz K. et al.. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477, 412–421 (2004). PubMed PMC
Yang L. et al.. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006). PubMed PMC
Pauley S., Lai E. & Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Developmental Dynamics 235, 2470–2482 (2006). PubMed PMC
Chang W., Brigande J. V., Fekete D. M. & Wu D. K. The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131, 4201–4211 (2004). PubMed
Kiernan A. E. et al.. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434, 1031–1035 (2005). PubMed
Pan N. et al.. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275, 66–80 (2011). PubMed PMC
Pauley S. et al.. Expression and function of FGF10 in mammalian inner ear development. Developmental dynamics 227, 203–215 (2003). PubMed PMC
Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J. L. & Anderson D. J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482 (1998). PubMed
Puligilla C., Dabdoub A., Brenowitz S. D. & Kelley M. W. Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30, 714–722 (2010). PubMed PMC
Bouchard M., de Caprona D., Busslinger M., Xu P. & Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10, 89 (2010). PubMed PMC
Fritzsch B., Kersigo J., Yang T., Jahan I. & Pan N. In The Primary Auditory Neurons of the Mammalian Cochlea 49–84 (Springer: New York, 2016).
Rubel E. W. & Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25, 51–101 (2002). PubMed
Mao Y., Reiprich S., Wegner M. & Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PloS one 9, e94580 (2014). PubMed PMC
Fritzsch B., Dillard M., Lavado A., Harvey N. L. & Jahan I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PloS one 5, e9377 (2010). PubMed PMC
Kersigo J. & Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 7, 33 (2015). PubMed PMC
Fritzsch B., Silos-Santiago I., Bianchi L. M. & Farinas I. In Seminars in cell & developmental biology. Vol. 8, 277–284 (Elsevier, 1997). PubMed
Jahan I., Pan N., Kersigo J. & Fritzsch B. Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297, 30–41 (2013). PubMed PMC
Sheykholeslami K. et al.. A new mutation of the Atoh1 gene in mice with normal life span allows analysis of inner ear and cerebellar phenotype in aging. PloS one 8, e79791 (2013). PubMed PMC
Jahan I., Pan N., Elliott K. L. & Fritzsch B. The quest for restoring hearing: understanding ear development more completely. Bioessays 37, 1016–1027 (2015). PubMed PMC
Jahan I., Pan N., Kersigo J. & Fritzsch B. Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development. Development 142, 2810–2821 (2015). PubMed PMC
Ahmed M. et al.. Eya1-six1 interaction is sufficient to induce hair cell fate in the cochlea by activating atoh1 expression in cooperation with sox2. Dev Cell 22, 377–390 (2012). PubMed PMC
Pan N. et al.. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PloS one 7, e30358 (2012). PubMed PMC
Dabdoub A. et al.. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences 105, 18396–18401 (2008). PubMed PMC
Kempfle J. S., Turban J. L. & Edge A. S. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 6, 23293 (2016). PubMed PMC
Reiprich S. et al.. In GLIA. Vol 57, Issue S13, S26–S171 (2009).
Cheah K. S. E. & Xu P.-X. In Sox2 (ed Robin Lovell-Badge) 263–280 (Academic Press, 2016).
Kim W.-Y. et al.. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128, 417–426 (2001). PubMed PMC
Goodrich L. V. In The Primary Auditory Neurons of the Mammalian Cochlea 11–48 (Springer, 2016).
Fritzsch B. et al.. Development and evolution of inner ear sensory epithelia and their innervation. Journal of neurobiology 53, 143–156 (2002). PubMed PMC
Farinas I. et al.. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21, 6170–6180 (2001). PubMed PMC
Ruben R. J. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta oto-laryngologica Suppl 220, 221 (1967). PubMed
Coate T. M. & Kelley M. W. In Seminars in cell & developmental biology. Vol. 24, 460–469 (Elsevier, 2013). PubMed PMC
Gnedeva K. & Hudspeth A. SoxC transcription factors are essential for the development of the inner ear. Proceedings of the National Academy of Sciences 112, 14066–14071 (2015). PubMed PMC
Mulvaney J. & Dabdoub A. Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 13, 281–293 (2012). PubMed PMC
Shroyer N. F. et al.. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488 (2007). PubMed
Chumak T. et al.. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol Neurobiol 53, 2368–83 (2015). PubMed
Kopecky B. J., Duncan J. S., Elliott K. L. & Fritzsch B. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy. J Microsc 248, 292–298 (2012). PubMed PMC
Preibisch S., Saalfeld S. & Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009). PubMed PMC
Fritzsch B., Duncan J. S., Kersigo J., Gray B. & Elliott K. L. In Auditory and Vestibular Research: Methods and Protocols. (ed Sokolowski B.) 221–246 (Springer, 2016).
Simmons D., Duncan J., de Caprona D. C. & Fritzsch B. In Auditory and vestibular efferents 187–216 (Springer: New York, 2011).
Duncan J. S., Elliott K. L., Kersigo J., Gray B. & Fritzsch B. Combining Whole-Mount In Situ Hybridization with Neuronal Tracing and Immunohistochemistry. In Situ Hybridization Methods 339–352 (2015).
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization
Development in the Mammalian Auditory System Depends on Transcription Factors
Molecular Aspects of the Development and Function of Auditory Neurons
Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers
Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2
HIF-1α is required for development of the sympathetic nervous system