Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AG060504
NIA NIH HHS - United States
PubMed
30541910
PubMed Central
PMC6363931
DOI
10.1523/jneurosci.2557-18.2018
PII: JNEUROSCI.2557-18.2018
Knihovny.cz E-zdroje
- Klíčová slova
- Neurod1 mutation, auditory pathway, cochlear nucleus, inferior colliculus, plasticity, sensory topographical map,
- MeSH
- chování zvířat fyziologie MeSH
- colliculus inferior anatomie a histologie fyziologie MeSH
- ganglion spirale cytologie fyziologie MeSH
- mapování mozku MeSH
- mezencefalon embryologie fyziologie MeSH
- myši knockoutované MeSH
- myši MeSH
- nucleus cochlearis anatomie a histologie fyziologie MeSH
- sluch fyziologie MeSH
- sluchová percepce genetika fyziologie MeSH
- těhotenství MeSH
- transkripční faktory bHLH genetika fyziologie MeSH
- úleková reakce genetika fyziologie MeSH
- vestibulární aparát anatomie a histologie fyziologie MeSH
- vnímání výšky zvuku fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Neurod1 protein, mouse MeSH Prohlížeč
- transkripční faktory bHLH MeSH
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Department of Biology University of Iowa Iowa City Iowa 52242 and
Faculty of Science Charles University Prague Czechia 12843
Zobrazit více v PubMed
Baker CI, Peli E, Knouf N, Kanwisher NG (2005) Reorganization of visual processing in macular degeneration. J Neurosci 25:614–618. 10.1523/JNEUROSCI.3476-04.2005 PubMed DOI PMC
Bohuslavova R, Dodd N, Macova I, Chumak T, Horak M, Syka J, Fritzsch B, Pavlinkova G (2017) Pax2-Islet1 transgenic mice are hyperactive and have altered cerebellar foliation. Mol Neurobiol 54:1352–1368. 10.1007/s12035-016-9716-6 PubMed DOI PMC
Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186. 10.1146/annurev.neuro.21.1.149 PubMed DOI
Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC (2010) Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 30:7587–7597. 10.1523/JNEUROSCI.0389-10.2010 PubMed DOI PMC
Bures Z, Grécová J, Popelár J, Syka J (2010) Noise exposure during early development impairs the processing of sound intensity in adult rats. Eur J Neurosci 32:155–164. 10.1111/j.1460-9568.2010.07280.x PubMed DOI
Cao XJ, McGinley MJ, Oertel D (2008) Connections and synaptic function in the posteroventral cochlear nucleus of deaf jerker mice. J Comp Neurol 510:297–308. 10.1002/cne.21788 PubMed DOI PMC
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H (2017) Sensing external and self-motion with hair cells, a comparison of the lateral line and vestibular systems from a developmental and evolutionary perspective. Brain Behav Evol 90:98–116. 10.1159/000456646 PubMed DOI PMC
Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016) Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89:867–879. 10.1016/j.neuron.2015.12.041 PubMed DOI PMC
Chumak T, Bohuslavova R, Macova I, Dodd N, Buckiova D, Fritzsch B, Syka J, Pavlinkova G (2016) Deterioration of the medial olivocochlear efferent system accelerates age-related hearing loss in Pax2-Isl1 transgenic mice. Mol Neurobiol 53:2368–2383. 10.1007/s12035-015-9215-1 PubMed DOI
Clause A, Kim G, Sonntag M, Weisz CJ, Vetter DE, Rűbsamen R, Kandler K (2014) The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 82:822–835. 10.1016/j.neuron.2014.04.001 PubMed DOI PMC
Constantine-Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–641. 10.1126/science.309179 PubMed DOI
Cramer KS, Gabriele ML (2014) Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 277:152–162. 10.1016/j.neuroscience.2014.06.068 PubMed DOI PMC
Cruces-Solís H, Jing Z, Babaev O, Rubin J, Gür B, Krueger-Burg D, Strenzke N, de Hoz L (2018) Auditory midbrain coding of statistical learning that results from discontinuous sensory stimulation. PLoS Biol 16:e2005114. 10.1371/journal.pbio.2005114 PubMed DOI PMC
Deacon R. (2013) Measuring motor coordination in mice. J Vis Exp 75:e2609. 10.3791/2609 PubMed DOI PMC
Dijksterhuis JP, Petersen J, Schulte G (2014) WNT/Frizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR review 3. Br J Pharmacol 171:1195–1209. 10.1111/bph.12364 PubMed DOI PMC
Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 8:e62046. 10.1371/journal.pone.0062046 PubMed DOI PMC
Dvorakova M, Jahan I, Macova I, Chumak T, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G (2016) Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci Rep 6:38253. 10.1038/srep38253 PubMed DOI PMC
Eggermont JJ. (2017) Acquired hearing loss and brain plasticity. Hear Res 343:176–190. 10.1016/j.heares.2016.05.008 PubMed DOI
Elliott KL, Houston DW, Fritzsch B (2015) Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Sci Rep 5:8338. 10.1038/srep08338 PubMed DOI PMC
Fariñas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180. 10.1523/JNEUROSCI.21-16-06170.2001 PubMed DOI PMC
Fritzsch B, Elliott KL (2017) Evolution and development of the inner ear efferent system: transforming a motor neuron population to connect to the most unusual motor protein via ancient nicotinic receptors. Front Cell Neurosci 11:114. 10.3389/fncel.2017.00114 PubMed DOI PMC
Fritzsch B, Fariñas I, Reichardt LF (1997) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225. 10.1523/JNEUROSCI.17-16-06213.1997 PubMed DOI PMC
Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH (2006) The molecular and developmental basis of the evolution of the vertebrate auditory system. Int J Comp Psychol 19:1–25.
Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I (2010) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PloS One 5:e9377. 10.1371/journal.pone.0009377 PubMed DOI PMC
Fritzsch B, Duncan JS, Kersigo J, Gray B, Elliott KL (2016a) Neuroanatomical tracing techniques in the ear: history, state of the art, and future developments. In: Auditory and vestibular research: methods and protocols (Sokolowski B, ed), pp. 243–262. New York: Springer. PubMed PMC
Fritzsch B, Kersigo J, Yang T, Jahan I, Pan N (2016b) Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. In: The primary auditory neurons of the mammalian cochlea, pp. 49–84. New York: Springer.
Goebbels S, Bode U, Pieper A, Funfschilling U, Schwab MH, Nave KA (2005) Cre/loxP-mediated inactivation of the bHLH transcription factor gene NeuroD/BETA2. Genesis 42:247–252. 10.1002/gene.20138 PubMed DOI
Gogos JA, Osborne J, Nemes A, Mendelsohn M, Axel R (2000) Genetic ablation and restoration of the olfactory topographic map. Cell 103:609–620. 10.1016/S0092-8674(00)00164-1 PubMed DOI
Goodhill GJ. (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56:301–311. 10.1016/j.neuron.2007.09.027 PubMed DOI
Goodrich LV. (2016) Early development of the spiral ganglion. In: The primary auditory neurons of the mammalian cochlea, pp. 11–48. New York: Springer.
Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57. 10.1016/S1534-5807(03)00169-2 PubMed DOI PMC
Gurung B, Fritzsch B (2004) Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. J Comp Neurol 479:309–327. 10.1002/cne.20328 PubMed DOI PMC
Harrison RV. (2016) Biologic development of the auditory system from periphery to cortex. In: Comprehensive handbook of pediatric audiology, p. 23 San Diego: Plural.
Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564. 10.1152/jn.00184.2013 PubMed DOI PMC
Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409. 10.1098/rstb.1977.0050 PubMed DOI
Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509. 10.1146/annurev.neuro.31.060407.125533 PubMed DOI PMC
Jahan I, Kersigo J, Pan N, Fritzsch B (2010a) Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 341:95–110. 10.1007/s00441-010-0984-6 PubMed DOI PMC
Jahan I, Pan N, Kersigo J, Fritzsch B (2010b) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5:e11661. 10.1371/journal.pone.0011661 PubMed DOI PMC
Kandler K, Clause A, Noh J (2009) Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 12:711–717. 10.1038/nn.2332 PubMed DOI PMC
Karmakar K, Narita Y, Fadok J, Ducret S, Loche A, Kitazawa T, Genoud C, Di Meglio T, Thierry R, Bacelo J, Lüthi A, Rijli FM (2017) Hox2 genes are required for tonotopic map precision and sound discrimination in the mouse auditory brainstem. Cell Rep 18:185–197. 10.1016/j.celrep.2016.12.021 PubMed DOI
Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1167. 10.1038/nn.2181 PubMed DOI
Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426. PubMed PMC
Krahe R, Maler L (2014) Neural maps in the electrosensory system of weakly electric fish. Curr Opin Neurobiol 24:13–21. 10.1016/j.conb.2013.08.013 PubMed DOI
Kral A, Kronenberger WG, Pisoni DB, O'Donoghue GM (2016) Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol 15:610–621. 10.1016/S1474-4422(16)00034-X PubMed DOI PMC
Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854. 10.1101/gad.840500 PubMed DOI PMC
Lu CC, Cao XJ, Wright S, Ma L, Oertel D, Goodrich LV (2014) Mutation of Npr2 leads to blurred tonotopic organization of central auditory circuits in mice. PLoS Genetics 10:e1004823. 10.1371/journal.pgen.1004823 PubMed DOI PMC
Mao Y, Reiprich S, Wegner M, Fritzsch B (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PloS One 9:e94580. 10.1371/journal.pone.0094580 PubMed DOI PMC
Marrs GS, Spirou GA (2012) Embryonic assembly of auditory circuits: spiral ganglion and brainstem. J Physiol 590:2391–2408. 10.1113/jphysiol.2011.226886 PubMed DOI PMC
Martin MR, Rickets C (1981) Histogenesis of the cochlear nucleus of the mouse. J Comp Neurol 197:169–184. 10.1002/cne.901970113 PubMed DOI
Mombaerts P. (1999) Molecular biology of odorant receptors in vertebrates. Annu Rev Neurosci 22:487–509. 10.1146/annurev.neuro.22.1.487 PubMed DOI
Müller M, von Hünerbein K, Hoidis S, Smolders JW (2005) A physiological place–frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73. 10.1016/j.heares.2004.08.011 PubMed DOI
Muniak MA, Rivas A, Montey KL, May BJ, Francis HW, Ryugo DK (2013) 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol 521:1510–1532. 10.1002/cne.23238 PubMed DOI PMC
Muniak MA, Connelly CJ, Suthakar K, Milinkeviciute G, Ayeni FE, Ryugo DK (2016) Central projections of spiral ganglion neurons. In: The primary auditory neurons of the mammalian cochlea, pp. 157–190. New York: Springer.
Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, Tiwari VK (2016) NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 35:24–45. 10.15252/embj.201591206 PubMed DOI PMC
Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482. 10.1002/dvdy.20839 PubMed DOI PMC
Pelgrim M, Yamanbaeva G, Reisinger E, Strenzke N (2018) Sound encoding in the inferior colliculus of otoferlin Ile515Thr mutant mice. Laryngorhinootologie 97:S230–S231. 10.1055/s-0038-1640511 DOI
Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443. 10.1093/brain/60.4.389 DOI
Rawnsley DR, Xiao J, Lee JS, Liu X, Mericko-Ishizuka P, Kumar V, He J, Basu A, Lu M, Lynn FC, Pack M, Gasa R, Kahn ML (2013) The transcription factor atonal homolog 8 regulates Gata4 and Friend of Gata-2 during vertebrate development. J Biol Chem 288:24429–24440. 10.1074/jbc.M113.463083 PubMed DOI PMC
Renier N, Dominici C, Erzurumlu RS, Kratochwil CF, Rijli FM, Gaspar P, Chédotal A (2017) A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6:e23494. 10.7554/eLife.23494 PubMed DOI PMC
Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101. 10.1146/annurev.neuro.25.112701.142849 PubMed DOI
Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR, Edwards RH (2008) Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57:263–275. 10.1016/j.neuron.2007.11.032 PubMed DOI PMC
Sienknecht UJ, Köppl C, Fritzsch B (2014) Evolution and development of hair cell polarity and efferent function in the inner ear. Brain Behav Evol 83:150–161. 10.1159/000357752 PubMed DOI
Simmons D, Duncan J, de Caprona DC, Fritzsch B (2011) Development of the inner ear efferent system. In: Auditory and vestibular efferents, pp. 187–216. New York: Springer.
Sperry RW. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50:703–710. 10.1073/pnas.50.4.703 PubMed DOI PMC
Syka J. (2002) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 82:601–636. 10.1152/physrev.00002.2002 PubMed DOI
Tessarollo L, Coppola V, Fritzsch B (2004) NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 24:2575–2584. 10.1523/JNEUROSCI.5514-03.2004 PubMed DOI PMC
Tomková M, Tomek J, Novák O, Zelenka O, Syka J, Brom C (2015) Formation and disruption of tonotopy in a large-scale model of the auditory cortex. J Comput Neurosci 39:131–153. 10.1007/s10827-015-0568-2 PubMed DOI
Tritsch NX, Bergles DE (2010) Developmental regulation of spontaneous activity in the mammalian cochlea. J Neurosci 30:1539–1550. 10.1523/JNEUROSCI.3875-09.2010 PubMed DOI PMC
Tritsch NX, Rodríguez-Contreras A, Crins TT, Wang HC, Borst JG, Bergles DE (2010) Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 13:1050–1052. 10.1038/nn.2604 PubMed DOI PMC
Wang X. (2016) The yin and yang of auditory nerve damage. Neuron 89:680–682. 10.1016/j.neuron.2016.02.007 PubMed DOI
Wright S, Hwang Y, Oertel D (2014) Synaptic transmission between end bulbs of held and bushy cells in the cochlear nucleus of mice with a mutation in otoferlin. J Neurophysiol 112:3173–3188. 10.1152/jn.00522.2014 PubMed DOI PMC
Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of corti. Hear Res 278:21–33. 10.1016/j.heares.2011.03.002 PubMed DOI PMC
Yang T, Kersigo J, Wu S, Fritzsch B, Bassuk AG (2017) Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea. PloS One 12:e0183773. 10.1371/journal.pone.0183773 PubMed DOI PMC
Zhou X, Merzenich MM (2008) Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proc Natl Acad Sci U S A 105:4423–4428. 10.1073/pnas.0800009105 PubMed DOI PMC
Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization
Development in the Mammalian Auditory System Depends on Transcription Factors
Molecular Aspects of the Development and Function of Auditory Neurons
Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers
Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2
HIF-1α is required for development of the sympathetic nervous system