Dicer Deletion in the Ear Can Cut Most Neurons and Their Innervation of Hair Cells to Project to the Ear and the Brainstem
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AG051443
NIA NIH HHS - United States
AG060504
NIA NIH HHS - United States
PubMed
41516414
PubMed Central
PMC12787206
DOI
10.3390/ijms27010539
PII: ijms27010539
Knihovny.cz E-zdroje
- Klíčová slova
- Dicer, cochlear neurons, development, hair cells, miRNA, neurogenesis, projections, vestibular neurons, vestibular nuclei,
- MeSH
- DEAD-box RNA-helikasy * genetika metabolismus MeSH
- delece genu MeSH
- forkhead transkripční faktory genetika metabolismus MeSH
- ganglion spirale metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- mozkový kmen * metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony * metabolismus MeSH
- ribonukleasa III * genetika metabolismus MeSH
- vláskové buňky * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DEAD-box RNA-helikasy * MeSH
- Dicer1 protein, mouse MeSH Prohlížeč
- forkhead transkripční faktory MeSH
- mikro RNA MeSH
- ribonukleasa III * MeSH
Dicer is crucial for the generation of microRNAs (miRNAs), which are essential for regulating gene expression and keeping neuronal health. Dicer's conditional deletion cuts all spiral ganglion neurons but spares a small fraction of vestibular ganglion neurons, innervating the utricle and part of the saccule. Hair cells develop in the utricle, saccule, posterior crista, and the cochlea in Pax2Cre; Dicerf/f. Cochlear hair cells develop at the base and expand the OHC and IHC in the middle, or split into a base/middle and the apex. In contrast, Foxg1Cre; Dicerf/f cuts all canal cristae and cochlea hair cells, leaving a reduced utricle and an exceedingly small saccule. Likewise, Foxg1Cre; Gata3f/f shows no cochlear hair cells and is absent in the horizontal and reduced in the posterior crista. In contrast, the utricle, saccule, and anterior crista are nearly normal, underscoring the intricate regulatory networks involved in hair cell and neuronal development. The central projections have been described as the topology of various null deletions. Still, without spiral ganglion neurons, fibers from Dicer null mice navigate to the cochlear nuclei and expand into the vestibular nuclei to innervate the caudal brainstem. Beyond a ramification around the CN, no fibers expand to reach the cerebellum, likely due to Pax2 and Foxg1 that cut these neurons. Genetic alterations, such as Dicer deletion, can lead to hearing loss and impairments in auditory signal processing, illustrating the critical role of microRNAs in the development and function of auditory and vestibular neurons. Further studies on this topic could help in understanding potential therapeutic targets for hearing loss associated with neuronal degradation of miRNA.
Department of Neurological Sciences University of Nebraska Medical Center Omaha NE 68198 USA
Department of Pathology University of Iowa Health Care Iowa City IA 52246 USA
Institute of Biotechnology of the Czech Academy of Sciences 25250 Vestec Czech Republic
Zobrazit více v PubMed
Pyott S.J., Pavlinkova G., Yamoah E.N., Fritzsch B. Harmony in the molecular orchestra of hearing: Developmental mechanisms from the ear to the brain. Annu. Rev. Neurosci. 2024;47:1–20. doi: 10.1146/annurev-neuro-081423-093942. PubMed DOI PMC
Yamoah E.N., Pavlinkova G., Fritzsch B. Molecular Cascades That Build and Connect Auditory Neurons from Hair Cells to the Auditory Cortex. J. Exp. Neurol. 2025;6:111–120. doi: 10.33696/Neurol.6.114. PubMed DOI PMC
Petit C., Bonnet C., Safieddine S. Deafness: From genetic architecture to gene therapy. Nat. Rev. Genet. 2023;24:665–686. doi: 10.1038/s41576-023-00597-7. PubMed DOI
Lee J.H., Yamoah E.N., Kersigo J., Elliott K., LaRoda N., Pavlinkova G., Fritzsch B. The segregation of Calb1, Calb2, and Prph neurons reveals distinct and mixed neuronal populations and projections to hair cells in the inner ear and central nuclei. Dev. Dyn. 2025;Epub ahead of printing doi: 10.1002/dvdy.70093. PubMed DOI
Zine A., Fritzsch B. Early steps towards hearing: Placodes and sensory development. Int. J. Mol. Sci. 2023;24:6994. doi: 10.3390/ijms24086994. PubMed DOI PMC
Macova I., Pysanenko K., Chumak T., Dvorakova M., Bohuslavova R., Syka J., Fritzsch B., Pavlinkova G. Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J. Neurosci. 2019;39:984–1004. doi: 10.1523/JNEUROSCI.2557-18.2018. PubMed DOI PMC
Matei V., Pauley S., Kaing S., Rowitch D., Beisel K.W., Morris K., Feng F., Jones K., Lee J., Fritzsch B. Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 2005;234:633–650. doi: 10.1002/dvdy.20551. PubMed DOI PMC
Elliott K.L., Pavlínková G., Chizhikov V.V., Yamoah E.N., Fritzsch B. Development in the mammalian auditory system depends on transcription factors. Int. J. Mol. Sci. 2021;22:4189. doi: 10.3390/ijms22084189. PubMed DOI PMC
Banks S.A., Pierce M.L., Soukup G.A. Sensational microRNAs: Neurosensory roles of the microRNA-183 family. Mol. Neurobiol. 2020;57:358–371. doi: 10.1007/s12035-019-01717-3. PubMed DOI
Avraham K.B., Khalaily L., Noy Y., Kamal L., Koffler-Brill T., Taiber S. The noncoding genome and hearing loss. Hum. Genet. 2022;141:323–333. doi: 10.1007/s00439-021-02359-z. PubMed DOI
Taiber S., Gwilliam K., Hertzano R., Avraham K.B. The Genomics of Auditory Function and Disease. Annu. Rev. Genom. Hum. Genet. 2022;23:275–299. doi: 10.1146/annurev-genom-121321-094136. PubMed DOI PMC
Weston M.D., Pierce M.L., Jensen-Smith H.C., Fritzsch B., Rocha-Sanchez S., Beisel K.W., Soukup G.A. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Dev. Dyn. 2011;240:808–819. doi: 10.1002/dvdy.22591. PubMed DOI PMC
Weston M.D., Pierce M.L., Rocha-Sanchez S., Beisel K.W., Soukup G.A. MicroRNA gene expression in the mouse inner ear. Brain Res. 2006;1111:95–104. doi: 10.1016/j.brainres.2006.07.006. PubMed DOI
Pierce M.L., Weston M.D., Fritzsch B., Gabel H.W., Ruvkun G., Soukup G.A. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol. Dev. 2008;10:106–113. doi: 10.1111/j.1525-142X.2007.00217.x. PubMed DOI PMC
Im H., Song Y., Kim J.K., Park D.-K., Kim D.-S., Kim H., Shin J.-O. Molecular regulation of palatogenesis and clefting: An integrative analysis of genetic, epigenetic networks, and environmental interactions. Int. J. Mol. Sci. 2025;26:1382. doi: 10.3390/ijms26031382. PubMed DOI PMC
Kim H., Lee Y.-Y., Kim V.N. The biogenesis and regulation of animal microRNAs. Nat. Rev. Mol. Cell Biol. 2025;26:276–296. doi: 10.1038/s41580-024-00805-0. PubMed DOI
Paturi S., Deshmukh M.V. A glimpse of “Dicer Biology” through the structural and functional perspective. Front. Mol. Biosci. 2021;8:643657. doi: 10.3389/fmolb.2021.643657. PubMed DOI PMC
Vergani-Junior C.A., Tonon-da-Silva G., Inan M.D., Mori M.A. DICER: Structure, function, and regulation. Biophys. Rev. 2021;13:1081–1090. doi: 10.1007/s12551-021-00902-w. PubMed DOI PMC
Zapletal D., Taborska E., Pasulka J., Malik R., Kubicek K., Zanova M., Much C., Sebesta M., Buccheri V., Horvat F., et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell. 2022;82:4064–4079.e4013. doi: 10.1016/j.molcel.2022.10.010. PubMed DOI PMC
Jee D., Lee S., Yang D., Rickert R., Shang R., Huangfu D., Lai E.C. Human DICER1 hotspot mutation induces both loss and gain of miRNA function. Nat. Struct. Mol. Biol. 2025;32:2553–2563. doi: 10.1038/s41594-025-01701-7. PubMed DOI
Slade I., Bacchelli C., Davies H., Murray A., Abbaszadeh F., Hanks S., Barfoot R., Burke A., Chisholm J., Hewitt M. DICER1 syndrome: Clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J. Med. Genet. 2011;48:273–278. doi: 10.1136/jmg.2010.083790. PubMed DOI
González I.A., Stewart D.R., Schultz K.A.P., Field A.P., Hill D.A., Dehner L.P. DICER1 tumor predisposition syndrome: An evolving story initiated with the pleuropulmonary blastoma. Mod. Pathol. 2022;35:4–22. doi: 10.1038/s41379-021-00905-8. PubMed DOI PMC
Zapletal D., Kubicek K., Svoboda P., Stefl R. Dicer structure and function: Conserved and evolving features. EMBO Rep. 2023;24:e57215. doi: 10.15252/embr.202357215. PubMed DOI PMC
Saranya S., Prathiviraj R., Chellapandi P. Evolutionary transitions of DNA replication origins between archaea and bacteria. J. Basic Microbiol. 2025;65:e2400527. doi: 10.1002/jobm.202400527. PubMed DOI
Forterre P. The last universal common ancestor of ribosome-encoding organisms: Portrait of LUCA. J. Mol. Evol. 2024;92:550–583. doi: 10.1007/s00239-024-10186-9. PubMed DOI
Aderounmu A.M., Aruscavage P.J., Kolaczkowski B., Bass B.L. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. Elife. 2023;12:e85120. doi: 10.7554/eLife.85120. PubMed DOI PMC
Harfe B.D., McManus M.T., Mansfield J.H., Hornstein E., Tabin C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA. 2005;102:10898–10903. doi: 10.1073/pnas.0504834102. PubMed DOI PMC
Kersigo J., D’Angelo A., Gray B.D., Soukup G.A., Fritzsch B. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis. 2011;49:326–341. doi: 10.1002/dvg.20714. PubMed DOI PMC
Soukup G.A., Fritzsch B., Pierce M.L., Weston M.D., Jahan I., McManus M.T., Harfe B.D. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev. Biol. 2009;328:328–341. doi: 10.1016/j.ydbio.2009.01.037. PubMed DOI PMC
Van den Ackerveken P., Mounier A., Huyghe A., Sacheli R., Vanlerberghe P.B., Volvert M.L., Delacroix L., Nguyen L., Malgrange B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ. 2017;24:2054–2065. doi: 10.1038/cdd.2017.127. PubMed DOI PMC
Rosengauer E., Hartwich H., Hartmann A.M., Rudnicki A., Satheesh S.V., Avraham K.B., Nothwang H.G. Egr2::cre mediated conditional ablation of dicer disrupts histogenesis of mammalian central auditory nuclei. PLoS ONE. 2012;7:e49503. doi: 10.1371/journal.pone.0049503. PubMed DOI PMC
Riccomagno M.M., Martinu L., Mulheisen M., Wu D.K., Epstein D.J. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 2002;16:2365–2378. doi: 10.1101/gad.1013302. PubMed DOI PMC
Ma Q., Anderson D.J., Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol. 2000;1:129–143. doi: 10.1007/s101620010017. PubMed DOI PMC
Jahan I., Kersigo J., Pan N., Fritzsch B. Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res. 2010;341:95–110. doi: 10.1007/s00441-010-0984-6. PubMed DOI PMC
Bouchard M., de Caprona D., Busslinger M., Xu P., Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev. Biol. 2010;10:89. doi: 10.1186/1471-213X-10-89. PubMed DOI PMC
Burton Q., Cole L.K., Mulheisen M., Chang W., Wu D.K. The role of Pax2 in mouse inner ear development. Dev. Biol. 2004;272:161–175. doi: 10.1016/j.ydbio.2004.04.024. PubMed DOI
Duncan J.S., Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE. 2013;8:e62046. doi: 10.1371/journal.pone.0062046. PubMed DOI PMC
Chizhikov V.V., Iskusnykh I.Y., Fattakhov N., Fritzsch B. Lmx1a and Lmx1b are redundantly required for the development of multiple components of the mammalian auditory system. Neuroscience. 2021;452:247–264. doi: 10.1016/j.neuroscience.2020.11.013. PubMed DOI PMC
Fritzsch B., Weng X., Yamoah E.N., Qin T., Hui C.C., Lebrón-Mora L., Pavlinkova G., Sham M.H. Irx3/5 Null Deletion in Mice Blocks Cochlea-Saccule Segregation and Disrupts the Auditory Tonotopic Map. J. Comp. Neurol. 2024;532:e70008. doi: 10.1002/cne.70008. PubMed DOI PMC
Maricich S.M., Xia A., Mathes E.L., Wang V.Y., Oghalai J.S., Fritzsch B., Zoghbi H.Y. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J. Neurosci. 2009;29:11123–11133. doi: 10.1523/JNEUROSCI.2232-09.2009. PubMed DOI PMC
Filova I., Pysanenko K., Tavakoli M., Vochyanova S., Dvorakova M., Bohuslavova R., Smolik O., Fabriciova V., Hrabalova P., Benesova S. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc. Natl. Acad. Sci. USA. 2022;119:e2207433119. doi: 10.1073/pnas.2207433119. PubMed DOI PMC
Pavlinkova G., Xu P.-X., Cheah K.S., Yamoah E.N., Fritzsch B. Regulatory Networks Driving the Specification, Differentiation, and Diversification of Neurons in the Mouse Inner Ear. JARO. 2026 in press . PubMed
Vermeiren S., Bellefroid E.J., Desiderio S. Vertebrate sensory ganglia: Common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol. 2020;8:587699. doi: 10.3389/fcell.2020.587699. PubMed DOI PMC
Xu J., Li J., Zhang T., Jiang H., Ramakrishnan A., Fritzsch B., Shen L., Xu P.-X. Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc. Natl. Acad. Sci. USA. 2021;118:e2025196118. doi: 10.1073/pnas.2025196118. PubMed DOI PMC
Puligilla C., Dabdoub A., Brenowitz S.D., Kelley M.W. Sox2 induces neuronal formation in the developing mammalian cochlea. J. Neurosci. 2010;30:714–722. doi: 10.1523/JNEUROSCI.3852-09.2010. PubMed DOI PMC
Steevens A.R., Sookiasian D.L., Glatzer J.C., Kiernan A.E. SOX2 is required for inner ear neurogenesis. Sci. Rep. 2017;7:4086. doi: 10.1038/s41598-017-04315-2. PubMed DOI PMC
Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 2020;457:43–56. doi: 10.1016/j.ydbio.2019.09.003. PubMed DOI PMC
Liu M., Pereira F.A., Price S.D., Chu M.-j., Shope C., Himes D., Eatock R.A., Brownell W.E., Lysakowski A., Tsai M.-J. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000;14:2839–2854. doi: 10.1101/gad.840500. PubMed DOI PMC
Kim W.-Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., Barth D.S., Lee J.E. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128:417–426. doi: 10.1242/dev.128.3.417. PubMed DOI PMC
Pauley S., Wright T.J., Pirvola U., Ornitz D., Beisel K., Fritzsch B. Expression and function of FGF10 in mammalian inner ear development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2003;227:203–215. doi: 10.1002/dvdy.10297. PubMed DOI PMC
Pauley S., Lai E., Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2006;235:2470–2482. doi: 10.1002/dvdy.20839. PubMed DOI PMC
Gu C., Rodriguez E.R., Reimert D.V., Shu T., Fritzsch B., Richards L.J., Kolodkin A.L., Ginty D.D. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell. 2003;5:45–57. doi: 10.1016/S1534-5807(03)00169-2. PubMed DOI PMC
Fritzsch B., Pauley S., Matei V., Katz D.M., Xiang M., Tessarollo L. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hear. Res. 2005;206:52–63. doi: 10.1016/j.heares.2004.11.025. PubMed DOI PMC
Fritzsch B., Tessarollo L., Coppola E., Reichardt L.F. Neurotrophins in the ear: Their roles in sensory neuron survival and fiber guidance. Prog. Brain Res. 2004;146:265–278. PubMed
Yang T., Kersigo J., Jahan I., Pan N., Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear. Res. 2011;278:21–33. doi: 10.1016/j.heares.2011.03.002. PubMed DOI PMC
Fritzsch B., Elliott K.L. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors. Front. Cell. Neurosci. 2017;11:114. doi: 10.3389/fncel.2017.00114. PubMed DOI PMC
Fritzsch B., Dillard M., Lavado A., Harvey N.L., Jahan I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS ONE. 2010;5:e9377. doi: 10.1371/journal.pone.0009377. PubMed DOI PMC
Bi Z., Ren M., Zhang Y., He S., Song L., Li X., Liu Z. Revisiting the potency of Tbx2 expression in transforming outer hair cells into inner hair cells at multiple ages in vivo. J. Neurosci. 2024;44:e1751232024. doi: 10.1523/JNEUROSCI.1751-23.2024. PubMed DOI PMC
Nichols D.H., Pauley S., Jahan I., Beisel K.W., Millen K.J., Fritzsch B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res. 2008;334:339–358. doi: 10.1007/s00441-008-0709-2. PubMed DOI PMC
Fritzsch B., Signore M., Simeone A. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev. Genes Evol. 2001;211:388–396. doi: 10.1007/s004270100166. PubMed DOI
Huang Y., Hill J., Yatteau A., Wong L., Jiang T., Petrovic J., Gan L., Dong L., Wu D.K. Reciprocal Negative Regulation Between Lmx1a and Lmo4 Is Required for Inner Ear Formation. J. Neurosci. 2018;38:5429–5440. doi: 10.1523/JNEUROSCI.2484-17.2018. PubMed DOI PMC
Tang L.S., Alger H.M., Pereira F.A. COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Development. 2006;133:3683–3693. doi: 10.1242/dev.02536. PubMed DOI
García-Gómez I., Webber J.L., Soria-Izquierdo B., Clancy J.C., Duggan A., Zhou Y., Murphey C.P., Harriman T.D.M., Wang J., Cheatham M.A., et al. Targeted cell interconversions reveal inner hair cell control of organ of Corti cytoarchitecture. Sci. Adv. 2025;11:eadz3944. doi: 10.1126/sciadv.adz3944. PubMed DOI PMC
Kopecky B., Santi P., Johnson S., Schmitz H., Fritzsch B. Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev. Dyn. 2011;240:1373–1390. doi: 10.1002/dvdy.22620. PubMed DOI PMC
Schultz J.A., Zeller U., Luo Z.X. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J. Morphol. 2017;278:236–263. doi: 10.1002/jmor.20632. PubMed DOI
Fritzsch B., Schultze H.P., Elliott K.L. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci. Rep. 2023;14:325–341. doi: 10.1016/j.ibneur.2023.03.007. Erratum in IBRO Neurosci. Rep. 2023, 14, 428. PubMed DOI PMC
Pirvola U., Ylikoski J., Trokovic R., Hébert J.M., McConnell S.K., Partanen J. FGFR1 is required for the development of the auditory sensory epithelium. Neuron. 2002;35:671–680. doi: 10.1016/S0896-6273(02)00824-3. PubMed DOI
Yamoah E.N., Li M., Shah A., Elliott K.L., Cheah K., Xu P.-X., Phillips S., Young S.M., Jr., Eberl D.F., Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res. Rev. 2020;59:101042. doi: 10.1016/j.arr.2020.101042. PubMed DOI PMC
Kiernan A.E., Pelling A.L., Leung K.K., Tang A.S., Bell D.M., Tease C., Lovell-Badge R., Steel K.P., Cheah K.S. Sox2 is required for sensory organ development in the mammalian inner ear. Nature. 2005;434:1031–1035. doi: 10.1038/nature03487. PubMed DOI
Bok J., Dolson D.K., Hill P., Rüther U., Epstein D.J., Wu D.K. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development. 2007;134:1713–1722. doi: 10.1242/dev.000760. PubMed DOI
Bermingham N.A., Hassan B.A., Wang V.Y., Fernandez M., Banfi S., Bellen H.J., Fritzsch B., Zoghbi H.Y. Proprioceptor pathway development is dependent on Math1. Neuron. 2001;30:411–422. doi: 10.1016/S0896-6273(01)00305-1. PubMed DOI
Elliott K.L., Iskusnykh I.Y., Chizhikov V.V., Fritzsch B. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci. Lett. 2023;806:137244. doi: 10.1016/j.neulet.2023.137244. PubMed DOI PMC
Filova I., Dvorakova M., Bohuslavova R., Pavlinek A., Elliott K.L., Vochyanova S., Fritzsch B., Pavlinkova G. Combined Atoh1 and Neurod1 deletion reveals autonomous growth of auditory nerve fibers. Mol. Neurobiol. 2020;57:5307–5323. doi: 10.1007/s12035-020-02092-0. PubMed DOI PMC
Elliott K.L., Kersigo J., Pan N., Jahan I., Fritzsch B. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation. Front. Neural Circuits. 2017;11:25. doi: 10.3389/fncir.2017.00025. PubMed DOI PMC
Glover J., Fritzsch B. Brains of primitive chordates. Encycl. Neurosci. 2009:439–448. doi: 10.1016/B978-008045046-9.00945-1. DOI
Diaz C., Glover J.C. The Vestibular Column in the Mouse: A Rhombomeric Perspective. Front. Neuroanat. 2021;15:806815. doi: 10.3389/fnana.2021.806815. PubMed DOI PMC
Zheng G.X., Do B.T., Webster D.E., Khavari P.A., Chang H.Y. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nat. Struct. Mol. Biol. 2014;21:585–590. doi: 10.1038/nsmb.2842. PubMed DOI PMC
Ma E., MacRae I.J., Kirsch J.F., Doudna J.A. Autoinhibition of human dicer by its internal helicase domain. J. Mol. Biol. 2008;380:237–243. doi: 10.1016/j.jmb.2008.05.005. PubMed DOI PMC
Li Y., Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2009;238:2388–2400. doi: 10.1002/dvdy.22056. PubMed DOI PMC
Damiani D., Alexander J.J., O’Rourke J.R., McManus M., Jadhav A.P., Cepko C.L., Hauswirth W.W., Harfe B.D., Strettoi E. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J. Neurosci. 2008;28:4878–4887. doi: 10.1523/JNEUROSCI.0828-08.2008. PubMed DOI PMC
Lee Y.-Y., Lee H., Kim H., Kim V.N., Roh S.-H. Structure of the human DICER–pre-miRNA complex in a dicing state. Nature. 2023;615:331–338. doi: 10.1038/s41586-023-05723-3. PubMed DOI
Fariñas I., Jones K.R., Tessarollo L., Vigers A.J., Huang E., Kirstein M., de Caprona D.C., Coppola V., Backus C., Reichardt L.F., et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 2001;21:6170–6180. doi: 10.1523/JNEUROSCI.21-16-06170.2001. PubMed DOI PMC
Dabdoub A., Puligilla C., Jones J.M., Fritzsch B., Cheah K.S., Pevny L.H., Kelley M.W. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. USA. 2008;105:18396–18401. doi: 10.1073/pnas.0808175105. PubMed DOI PMC
Kirjavainen A., Sulg M., Heyd F., Alitalo K., Ylä-Herttuala S., Möröy T., Petrova T.V., Pirvola U. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Dev. Biol. 2008;322:33–45. doi: 10.1016/j.ydbio.2008.07.004. PubMed DOI
Pan N., Jahan I., Kersigo J., Duncan J.S., Kopecky B., Fritzsch B. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS ONE. 2012;7:e30358. doi: 10.1371/journal.pone.0030358. PubMed DOI PMC
Tremblay M., Sanchez-Ferras O., Bouchard M. GATA transcription factors in development and disease. Development. 2018;145:dev164384. doi: 10.1242/dev.164384. PubMed DOI
Luo X.J., Deng M., Xie X., Huang L., Wang H., Jiang L., Liang G., Hu F., Tieu R., Chen R., et al. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum. Mol. Genet. 2013;22:3609–3623. doi: 10.1093/hmg/ddt212. PubMed DOI PMC
Morizet D., Foucher I., Mignerey I., Alunni A., Bally-Cuif L. Notch signaling blockade links transcriptome heterogeneity in quiescent neural stem cells with reactivation routes and potential. Sci. Adv. 2025;11:eadu3189. doi: 10.1126/sciadv.adu3189. PubMed DOI PMC
Zhang B., Chen S.-L., Teng X., Han Q., Wu T., Yang Z., Liu Y., Xiang K., Sun L. Function of Brain-Derived Neurotrophic Factor in the Vestibular-Cochlear System. Neurochem. Res. 2025;50:59. doi: 10.1007/s11064-024-04314-6. PubMed DOI
Ege T., Bloom C.R., Zhou M., Liu H., Tao L. Mapping of chromatin architecture and enhancer-promoter interactions in the cochlea. Front. Mol. Biosci. 2025;12:1683964. doi: 10.3389/fmolb.2025.1683964. PubMed DOI PMC
Blinkiewicz P.V., Long M.R., Stoner Z.A., Ketchum E.M., Sheltz-Kempf S.N., Duncan J.S. Gata3 is required in late proneurosensory development for proper sensory cell formation and organization. Sci. Rep. 2023;13:12573. doi: 10.1038/s41598-023-39707-0. PubMed DOI PMC
Maklad A., Fritzsch B. The developmental segregation of posterior crista and saccular vestibular fibers in mice: A carbocyanine tracer study using confocal microscopy. Dev. Brain Res. 2002;135:1–17. doi: 10.1016/S0165-3806(01)00327-3. PubMed DOI
Ji Y.R., Tona Y., Wafa T., Christman M.E., Tourney E.D., Jiang T., Ohta S., Cheng H., Fitzgerald T., Fritzsch B. Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat. Commun. 2022;13:6330. doi: 10.1038/s41467-022-33819-3. PubMed DOI PMC
Maklad A., Kamel S., Wong E., Fritzsch B. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res. 2010;340:303–321. doi: 10.1007/s00441-010-0944-1. PubMed DOI PMC
Ohyama T., Groves A.K. Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis. 2004;38:195–199. doi: 10.1002/gene.20017. PubMed DOI
Hébert J.M., McConnell S.K. Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev. Biol. 2000;222:296–306. doi: 10.1006/dbio.2000.9732. PubMed DOI
Schmidt H., Fritzsch B. Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res. 2019;378:15–32. doi: 10.1007/s00441-019-03050-6. PubMed DOI PMC