Regulatory Networks Driving the Specification, Differentiation, and Diversification of Neurons in the Mouse Inner Ear
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AG051443
NIH HHS - United States
PubMed
41491447
PubMed Central
PMC12865797
DOI
10.1007/s10162-025-01024-w
PII: 10.1007/s10162-025-01024-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cochlear neurons, Development, Neurogenesis, Projections, Vestibular neurons,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vestibular and spiral ganglion neurons (VGNs and SGNs) developed in the inner ear, where they extend fibers to innervate the vestibular and cochlear hair cells and project centrally to the vestibular and cochlear nuclei. This review focuses on representative molecular factors that regulate key processes in the development of inner ear neurons, including their specification, differentiation, axon targeting, and functional diversification. A temporal regulatory cascade defines the initial precursors through factors such as Smarca4, Six1, Eya1, followed by Sox2. While Sox2 deletion abolishes hair cell formation, a subset of inner ear neurons transiently develops but undergoes apoptosis before birth. In contrast, Neurog1 deletion eliminates all ear-derived neurons but results in differential reductions in cochlear and vestibular hair cells. The development and survival of inner ear neurons depend on TrkB and TrkC signaling. Although deletion of TrkB and TrkC results in a complete loss of neurons, each shows distinct effects on VGN and SGN survival and innervation. Downstream of early transcriptional regulators, Neurod1 and Isl1 promote neuronal differentiation, survival, migration, and the formation of peripheral and central projections. The development of VGNs depends on at least two progenitor populations that give rise to three neuronal subtypes that differ in their innervation of vestibular hair cells but show incomplete segregation in the vestibular nuclei. In contrast, SGNs develop later and exhibit sequential segregation into four neuronal subtypes, corresponding to the two types of cochlear hair cells, with tonotopically organized projections to both the cochlea and cochlear nuclei.
Zobrazit více v PubMed
Maklad A, Fritzsch B (2003) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510. 10.1016/s0361-9230(03)00054-6 PubMed DOI PMC
Pyott SJ, Pavlinkova G, Yamoah EN et al. (2024) Harmony in the molecular orchestra of hearing: developmental mechanisms from the ear to the brain. Annu Rev Neurosci 47:1–20. 10.1146/annurev-neuro-081423-093942 PubMed DOI PMC
Yang T, Kersigo J, Jahan I et al. (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278:21–33. 10.1016/j.heares.2011.03.002 PubMed DOI PMC
Thawani A, Maunsell HR, Zhang H et al. (2023) The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development. 10.1242/dev.202047 PubMed DOI PMC
Urness LD, Paxton CN, Wang X et al. (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604. 10.1016/j.ydbio.2010.02.016 PubMed DOI PMC
Urness LD, Wang X, Li C et al. (2020) Slc26a9(P2ACre): a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia. Development 147. 10.1242/dev.191015 PubMed DOI PMC
Ranganathan R, Sari F, Wang SX et al. (2025) Targets of the transcription factor Six1 identify previously unreported candidate deafness genes. Development. 10.1242/dev.204533 PubMed DOI PMC
Xu J, Li J, Zhang T et al. (2021) Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci USA. 10.1073/pnas.2025196118 PubMed DOI PMC
Dvorakova M, Macova I, Bohuslavova R et al. (2020) Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev Biol 457:43–56. 10.1016/j.ydbio.2019.09.003 PubMed DOI PMC
Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143. 10.1007/s101620010017 PubMed DOI PMC
Matei V, Pauley S, Kaing S et al. (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650. 10.1002/dvdy.20551 PubMed DOI PMC
Fariñas I, Jones KR, Tessarollo L et al. (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180. 10.1523/jneurosci.21-16-06170.2001 PubMed DOI PMC
Silos-Santiago I, Fagan AM, Garber M et al. (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9:2045–2056. 10.1111/j.1460-9568.1997.tb01372.x PubMed DOI
Kersigo J, Fritzsch B (2015) Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 7:33. 10.3389/fnagi.2015.00033 PubMed DOI PMC
Filova I, Bohuslavova R, Tavakoli M et al. (2022) Early deletion of Neurod1 alters neuronal lineage potential and diminishes neurogenesis in the inner ear. Front Cell Dev Biol 10:845461. 10.3389/fcell.2022.845461 PubMed DOI PMC
Filova I, Pysanenko K, Tavakoli M et al. (2022) ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci USA 119:e2207433119. 10.1073/pnas.2207433119 PubMed DOI PMC
Sun Y, Wang L, Zhu T et al. (2022) Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. Cell Rep 38:110542. 10.1016/j.celrep.2022.110542 PubMed DOI
Petitpré C, Faure L, Uhl P et al. (2022) Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 13:3878. 10.1038/s41467-022-31580-1 PubMed DOI PMC
Sanders TR, Kelley MW (2022) Specification of neuronal subtypes in the spiral ganglion begins prior to birth in the mouse. Proc Natl Acad Sci U S A 119:e2203935119. PubMed PMC
Matern MS, Durruthy-Durruthy R, Birol O et al. (2023) Transcriptional dynamics of delaminating neuroblasts in the mouse otic vesicle. Cell Rep 42:112545. 10.1016/j.cel-rep.2023.112545 PubMed DOI PMC
Lysakowski A (2020) Anatomy and microstructural organization of vestibular hair cells. In: Fritzsch B (ed) The senses: a comprehensive reference. Elsevier, pp 173–184
Petitpre C, Wu H, Sharma A et al. (2018) Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat Commun 9:3691. 10.1038/s41467-018-06033-3 PubMed DOI PMC
Shrestha BR, Chia C, Wu L et al. (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174(1229–1246):e1217. 10.1016/j.cell.2018.07.007 PubMed DOI PMC
Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE 8:e62046. 10.1371/journal.pone.0062046 PubMed DOI PMC
Appler JM, Lu CC, Druckenbrod NR et al. (2013) Gata3 is a critical regulator of cochlear wiring. J Neurosci 33:3679–3691 PubMed PMC
Chizhikov VV, Iskusnykh IY, Fattakhov N et al. (2021) Lmx1a and Lmx1b are redundantly required for the development of multiple components of the mammalian auditory system. Neuroscience 452:247–264. 10.1016/j.neuroscience.2020.11.013 PubMed DOI PMC
Bouchard M, de Caprona D, Busslinger M et al. (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89. 10.1186/1471-213x-10-89 PubMed DOI PMC
Bok J, Zenczak C, Hwang CH et al. (2013) Auditory ganglion source of sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 110:13869–13874 PubMed PMC
Riccomagno MM, Martinu L, Mulheisen M et al. (2002) Specification of the mammalian cochlea is dependent on sonic hedgehog. Genes Dev 16:2365–2378 PubMed PMC
Xu PX, Adams J, Peters H et al. (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117. 10.1038/12722 PubMed DOI
Zou D, Silvius D, Fritzsch B et al. (2004) PubMed DOI PMC
Li J, Cheng C, Xu J et al. (2022) The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res 50:10343–10359 PubMed PMC
Ahmed M, Xu J, Xu PX (2012) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139:1965–1977. 10.1242/dev.071670 PubMed DOI PMC
Zou D, Silvius D, Rodrigo-Blomqvist S et al. (2006) Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear. Dev Biol 298:430–441. 10.1016/j.bio.2006.06.049 PubMed DOI PMC
Zheng W, Huang L, Wei ZB et al. (2003) The role of Six1 in mammalian auditory system development. Development 130:3989–4000. 10.1242/dev.00628 PubMed DOI PMC
Kopecky B, Santi P, Johnson S et al. (2011) Conditional deletion of N-myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 240:1373–1390. 10.1002/dvdy.22620 PubMed DOI PMC
Domínguez-Frutos E, López-Hernández I, Vendrell V et al. (2011) N-myc controls proliferation, morphogenesis, and patterning of the inner ear. J Neurosci 31:7178–7189. 10.1523/jneurosci.0785-11.2011 PubMed DOI PMC
Kiernan AE, Pelling AL, Leung KK et al. (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035. 10.1038/nature03487 PubMed DOI
Fritzsch B, Kersigo J, Yang T et al. (2016) Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. In: Dabdoub A, Fritzsch B, Popper A, Fay R (eds) The primary auditory neurons of the mammalian cochlea. Springer Handbook of Auditory Research, vol 52. Springer, New York, NY, pp 49–84
Dabdoub A, Puligilla C, Jones JM et al. (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105:18396–18401. 10.1073/pnas.0808175105 PubMed DOI PMC
Fritzsch B, Dillard M, Lavado A et al. (2010) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS ONE 5:e9377. PubMed PMC
Ma Q, Chen Z, del Barco Barrantes I et al. (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482. 10.1016/s0896-6273(00)80988-5 PubMed DOI
Song Z, Jadali A, Fritzsch B et al. (2017) NEUROG1 regulates CDK2 to promote proliferation in otic progenitors. Stem Cell Reports 9:1516–1529. 10.1016/j.stemcr.2017.09.011 PubMed DOI PMC
Yamoah EN, Pavlinkova G, Fritzsch B (2025) Molecular cascades that build and connect auditory neurons from hair cells to the auditory cortex. J Exp Neurol 6:111–120 PubMed PMC
Shimojo H, Masaki T, Kageyama R (2024) The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell 59:1913–1923.e1916. 10.1016/j.devcel.2024.04.019 PubMed DOI
Tateya T, Imayoshi I, Tateya I et al. (2011) Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 352:329–340 PubMed
Raft S, Koundakjian EJ, Quinones H et al. (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415. 10.1242/dev.009118 PubMed DOI
Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67:3089–3099. 10.1007/s00018-010-0403-x PubMed DOI PMC
Jahan I, Pan N, Kersigo J et al. (2015) Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development. Development 142:2810–2821. 10.1242/dev.123091 PubMed DOI PMC
Fritzsch B, Barbacid M, Silos-Santiago I (1998) The combined effects of trkB and trkC mutations on the innervation of the inner ear. Int J Dev Neurosci 16:493–505. 10.1016/s0736-5748(98)00043-4 PubMed DOI
Kersigo J, Pan N, Lederman JD et al. (2018) A rnascope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mrna. Cell Tissue Res 374:251–262. 10.1007/s00441-018-2864-4 PubMed DOI PMC
Fritzsch B, Silos-Santiago I, Smeyne R et al. (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole mount DiI and scanning electron microscopic analysis. Audit Neurosci 1:401–417. https://www.mechanicsofhearing.org/mohdl/pdfs/AN/Fritzsch-etal-AudNeurosci-1995.pdf
Bai L, Lehnert BP, Liu J et al. (2015) Genetic identification of an expansive mechanoreceptor sensitive to skin stroking. Cell 163:1783–1795. 10.1016/j.cell.2015.11.060 PubMed DOI PMC
Gomes RA, Hampton C, El-Sabeawy F et al. (2006) The dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons. J Neurosci 26:11487–11500 PubMed PMC
Green SH, Bailey E, Wang Q et al. (2012) The Trk A, B, C’s of neurotrophins in the cochlea. Anat Rec Adv Integr Anat Evol Biol 295:1877–1895 PubMed
Coppola V, Kucera J, Palko ME et al. (2001) Dissection of NT3 functions PubMed DOI
Tessarollo L, Coppola V, Fritzsch B (2004) NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 24:2575–2584. 10.1523/jneurosci.5514-03.2004 PubMed DOI PMC
Agerman K, Hjerling-Leffler J, Blanchard MP et al. (2003) BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 130:1479–1491. 10.1242/dev.00378 PubMed DOI
Fritzsch B, Silos-Santiago II, Bianchi LM et al. (1997) Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Semin Cell Dev Biol 8:277–284. 10.1006/scdb.1997.0144 PubMed DOI
Elliott KL, Kersigo J, Lee JH et al. (2021) Sustained loss of Bdnf affects peripheral but not central vestibular targets. Front Neurol 12:768456. 10.3389/fneur.2021.768456 PubMed DOI PMC
Bianchi LM, Conover JC, Fritzsch B et al. (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122:1965–1973 PubMed
Herranen A, Ikäheimo K, Lankinen T et al. (2020) Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis 11:100. 10.1038/s41419-020-2286-6 PubMed DOI PMC
Adamson CL, Reid MA, Davis RL (2002) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22:1385–1396. 10.1523/JNEUROSCI.22-04-01385.2002 PubMed DOI PMC
Wan G, Gomez-Casati ME, Gigliello AR et al. (2014) Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. 10.7554/eLife.03564 PubMed DOI PMC
Kim W-Y, Fritzsch B, Serls A et al. (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426 PubMed PMC
Macova I, Pysanenko K, Chumak T et al. (2019) Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J Neurosci 39:984–1004. 10.1523/JNEUROSCI.2557-18.2018 PubMed DOI PMC
Jahan I, Pan N, Kersigo J et al. (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE 5:e11661. PubMed PMC
Liu M, Pereira FA, Price SD et al. (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854 PubMed PMC
Pavlinkova G, Smolik O (2024) NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 12:1435546. 10.3389/fcell.2024.1435546 PubMed DOI PMC
Filova I, Dvorakova M, Bohuslavova R et al. (2020) Combined Atoh1 and Neurod1 deletion reveals autonomous growth of auditory nerve fibers. Mol Neurobiol 57:5307–5323. 10.1007/s12035-020-02092-0 PubMed DOI PMC
Sun S, Siebald C, Müller U (2021) Subtype maturation of spiral ganglion neurons. Curr Opin Otolaryngol Head Neck Surg 29:391–399 PubMed
Pavlinkova G (2020) Molecular aspects of the development and function of auditory neurons. Int J Mol Sci. 10.3390/ijms22010131 PubMed DOI PMC
Radde-Gallwitz K, Pan L, Gan L et al. (2004) Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477:412–421 PubMed PMC
Mao Y, Reiprich S, Wegner M et al. (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS ONE 9:e94580. 10.1371/journal.pone.0094580 PubMed DOI PMC
Maklad A, Kamel S, Wong E et al. (2010) Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res 340:303–321 PubMed PMC
Schmidt H, Fritzsch B (2019) Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. Cell Tissue Res 378:15–32. 10.1007/s00441-019-03050-6 PubMed DOI PMC
Kaiser M, Wojahn I, Rudat C et al. (2021) Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development. 10.1242/dev.195651 PubMed DOI
Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482 PubMed PMC
Bastille I, Lee L, Moncada-Reid C et al. (2025) Combinatorial transcriptional regulation establishes subtype-appropriate synaptic properties in auditory neurons. Cell Rep. 10.1016/j.celrep.2025.115796 PubMed DOI PMC
Kevetter GA, Leonard RB (2002) Molecular probes of the vestibular nerve. Part II. Characterization of neurons in Scarpa’s ganglion to determine separate populations within the nerve. Brain Res 928:18–29. 10.1016/s0006-8993(01)03264-4 PubMed DOI
Lee JH, Yamoah EN, Kersigo J et al. (2025) The segregation of Calb1, Calb2, and Prph neurons reveals distinct and mixed neuronal populations and projections to hair cells in the inner ear and central nuclei. Dev Dyn. 10.1002/dvdy.70093 PubMed DOI
Ballantyne J, Engström H (1969) Morphology of the vestibular ganglion cells. J Laryngol Otol 83:19–42 PubMed
Fritzsch B, Weng X, Yamoah EN et al. (2024) PubMed DOI PMC
Elliott KL, Kersigo J, Lee JH et al. (2021) Developmental changes in peripherin-eGFP expression in spiral ganglion neurons. Front Cell Neurosci 15:678113. 10.3389/fncel.2021.678113 PubMed DOI PMC
Pauley S, Wright TJ, Pirvola U et al. (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215. 10.1002/dvdy.10297 PubMed DOI PMC
Gu C, Rodriguez ER, Reimert DV et al. (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57 PubMed PMC
Fritzsch B, Pauley S, Matei V et al. (2005) Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hear Res 206:52–63. 10.1016/j.heares.2004.11.025 PubMed DOI PMC
Diaz C, Glover JC (2021) The vestibular column in the mouse: a rhombomeric perspective. Front Neuroanat 15:806815. 10.3389/fnana.2021.806815 PubMed DOI PMC
Glover JC, Fritzsch B (2022) Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: a validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 13:306–313. 10.1016/j.ibneur.2022.09.011 PubMed DOI PMC
Glover JC (2020) Development and segmental organization of first order information processing centers in the hindbrain. In: Fritzsch B (ed) The senses: a comprehensive reference. Elsevier, pp 256–272
Sherrill HE, Jean P, Driver EC et al. (2019) Pou4f1 defines a subgroup of type I spiral ganglion neurons and is necessary for normal inner hair cell presynaptic Ca2+ signaling. J Neurosci 39(27):5284–5298. 10.1523/JNEUROSCI.2728-18 PubMed DOI PMC
Xu M, Li S, Xie X et al. (2024) ISL1 and POU4F1 directly interact to regulate the differentiation and survival of inner ear sensory neurons. J Neurosci 44 PubMed PMC
Shrestha BR, Wu L, Goodrich LV (2023) Runx1 controls auditory sensory neuron diversity in mice. Dev Cell 58(4):306–319.e5. 10.1016/j.devcel.2023.01.008 PubMed DOI PMC
Siebald C, Vincent PF, Bottom RT et al. (2023) Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc Natl Acad Sci USA 120:e2217033120. PubMed PMC
Sun S, Babola T, Pregernig G et al. (2018) Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174(1247–1263):e1215. 10.1016/j.cell.2018.07.008 PubMed DOI PMC
Salehi P, Ge MX, Gundimeda U et al. (2017) Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genet 13:e1007048. PubMed PMC
Kersigo J, D’Angelo A, Gray BD et al. (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–341. 10.1002/dvg.20714 PubMed DOI PMC
Soukup GA, Fritzsch B, Pierce ML et al. (2009) Residual micro-RNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 328:328–341. 10.1016/j.ydbio.2009.01.037 PubMed DOI PMC
Bermingham NA, Hassan BA, Wang VY et al. (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422. 10.1016/s0896-6273(01)00305-1 PubMed DOI
Butts JC, Wu SR, Durham MA et al. (2024) A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 59:2171–2188.e2177. 10.1016/j.devcel.2024.07.007 PubMed DOI PMC
Elliott KL, Iskusnykh IY, Chizhikov VV et al. (2023) Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci Lett 806:137244. 10.1016/j.neulet.2023.137244 PubMed DOI PMC
Iskusnykh IY, Steshina EY, Chizhikov VV (2016) Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci 36:2691–2710. 10.1523/jneurosci.2526-15.2016 PubMed DOI PMC
Jing J, Hu M, Ngodup T et al. (2025) Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 16:489. 10.1038/s41467-024-55257-z PubMed DOI PMC
Oertel D, Cao X-J (2020) The ventral cochlear nucleus. In: Fritzsch B (ed) The senses: a comprehensive reference. Elsevier, pp 517–532
Wong NF, Brongo SE, Forero EA et al. (2025) Convergence of type 1 spiral ganglion neuron subtypes onto principal neurons of the anteroventral cochlear nucleus. J Neurosci. 10.1523/jneurosci.1507-24.2024 PubMed DOI PMC
Kreeger LJ, Honnuraiah S, Maeker S et al. (2025) An anatomical and physiological basis for flexible coincidence detection in the auditory system. Elife 13:RP100492. 10.7554/eLife.100492 PubMed DOI PMC
Maklad A, Fritzsch B (2002) The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy. Dev Brain Res 135:1–17 PubMed
Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140:223–236 PubMed
Elliott KL, Kersigo J, Pan N et al. (2017) Spiral ganglion neuron projection development to the hindbrain in mice lacking peripheral and/or central target differentiation. Front Neural Circuits 11:25. 10.3389/fncir.2017.00025 PubMed DOI PMC
Muniak MA, Rivas A, Montey KL et al. (2013) 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol 521:1510–1532. 10.1002/cne.23238 PubMed DOI PMC
Fekete DM, Rouiller EM, Liberman MC et al. (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229:432–450. 10.1002/cne.902290311 PubMed DOI
Newlands SD, Purcell IM, Kevetter GA et al. (2002) Central projections of the utricular nerve in the gerbil. J Comp Neurol 452:11–23 PubMed
Straka H, Fritzsch B, Glover JC (2014) Connecting ears to eye muscles: evolution of a ‘simple’reflex arc. Brain Behav Evol 83:162–175 PubMed
Ji YR, Tona Y, Wafa T et al. (2022) Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat Commun 13:6330. PubMed PMC