Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification

. 2022 Jul 05 ; 13 (1) : 3878. [epub] 20220705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35790771

Grantová podpora
DOC 33 Austrian Science Fund FWF - Austria

Odkazy

PubMed 35790771
PubMed Central PMC9256748
DOI 10.1038/s41467-022-31580-1
PII: 10.1038/s41467-022-31580-1
Knihovny.cz E-zdroje

Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.

Zobrazit více v PubMed

Petitpre C, et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun. 2018;9:3691. doi: 10.1038/s41467-018-06033-3. PubMed DOI PMC

Shrestha BR, et al. Sensory neuron diversity in the inner ear is shaped by activity. Cell. 2018;174:1229–1246 e1217. doi: 10.1016/j.cell.2018.07.007. PubMed DOI PMC

Sun S, et al. Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell. 2018;174:1247–1263 e1215. doi: 10.1016/j.cell.2018.07.008. PubMed DOI PMC

Kawase T, Liberman MC. Spatial organization of the auditory nerve according to spontaneous discharge rate. J. Comp. Neurol. 1992;319:312–318. doi: 10.1002/cne.903190210. PubMed DOI

Liberman MC. Single-neuron labeling in the cat auditory nerve. Science. 1982;216:1239–1241. doi: 10.1126/science.7079757. PubMed DOI

Ruben, R. J. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 220, 221–244 (1967). PubMed

Appler JM, Goodrich LV. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly. Prog. Neurobiol. 2011;93:488–508. doi: 10.1016/j.pneurobio.2011.01.004. PubMed DOI PMC

Carney PR, Silver J. Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. J. Comp. Neurol. 1983;215:359–369. doi: 10.1002/cne.902150402. PubMed DOI

Coate TM, et al. Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron. 2012;73:49–63. doi: 10.1016/j.neuron.2011.10.029. PubMed DOI PMC

Smith CA. Innervation pattern of the cochlea. The internal hair cell. Trans. Am. Otol. Soc. 1961;49:35–60. PubMed

Koundakjian EJ, Appler JL, Goodrich LV. Auditory neurons make stereotyped wiring decisions before maturation of their targets. J. Neurosci. 2007;27:14078–14088. doi: 10.1523/JNEUROSCI.3765-07.2007. PubMed DOI PMC

Wiwatpanit T, et al. Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature. 2018;563:691–695. doi: 10.1038/s41586-018-0570-8. PubMed DOI PMC

Kolla L, et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat. Commun. 2020;11:2389. doi: 10.1038/s41467-020-16113-y. PubMed DOI PMC

Markowitz AL, Kalluri R. Gradients in the biophysical properties of neonatal auditory neurons align with synaptic contact position and the intensity coding map of inner hair cells. Elife. 2020;9:e55378. doi: 10.7554/eLife.55378. PubMed DOI PMC

Picelli S, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014;9:171–181. doi: 10.1038/nprot.2014.006. PubMed DOI

Delacroix L, Malgrange B. Cochlear afferent innervation development. Hear. Res. 2015;330:157–169. doi: 10.1016/j.heares.2015.07.015. PubMed DOI

Nowotschin S, et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature. 2019;569:361–367. doi: 10.1038/s41586-019-1127-1. PubMed DOI PMC

Setty M, et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 2019;37:451–460. doi: 10.1038/s41587-019-0068-4. PubMed DOI PMC

Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M. CXCL14 as an emerging immune and inflammatory modulator. J. Inflamm. 2016;13:1. doi: 10.1186/s12950-015-0109-9. PubMed DOI PMC

Scheffer DI, Shen J, Corey DP, Chen ZY. Gene expression by mouse inner ear hair cells during development. J. Neurosci. 2015;35:6366–6380. doi: 10.1523/JNEUROSCI.5126-14.2015. PubMed DOI PMC

Trowe MO, Maier H, Schweizer M, Kispert A. Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes. Development. 2008;135:1725–1734. doi: 10.1242/dev.014043. PubMed DOI

Vitelli F, et al. TBX1 is required for inner ear morphogenesis. Hum. Mol. Genet. 2003;12:2041–2048. doi: 10.1093/hmg/ddg216. PubMed DOI

Wu L, Sagong B, Choi JY, Kim UK, Bok J. A systematic survey of carbonic anhydrase mRNA expression during mammalian inner ear development. Dev. Dyn. 2013;242:269–280. doi: 10.1002/dvdy.23917. PubMed DOI

Yu WM, Goodrich LV. Morphological and physiological development of auditory synapses. Hear Res. 2014;311:3–16. doi: 10.1016/j.heares.2014.01.007. PubMed DOI PMC

Urbina FL, Gupton SL. SNARE-mediated exocytosis in neuronal development. Front Mol. Neurosci. 2020;13:133. doi: 10.3389/fnmol.2020.00133. PubMed DOI PMC

Coate TM, Spita NA, Zhang KD, Isgrig KT, Kelley MW. Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. Elife. 2015;4:e07830. doi: 10.7554/eLife.07830. PubMed DOI PMC

Tritsch NX, Bergles DE. Developmental regulation of spontaneous activity in the Mammalian cochlea. J. Neurosci. 2010;30:1539–1550. doi: 10.1523/JNEUROSCI.3875-09.2010. PubMed DOI PMC

Babola TA, et al. Purinergic signaling controls spontaneous activity in the auditory system throughout early development. J. Neurosci. 2021;41:594–612. doi: 10.1523/JNEUROSCI.2178-20.2020. PubMed DOI PMC

Michanski S, et al. Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea. Proc. Natl Acad. Sci. USA. 2019;116:6415–6424. doi: 10.1073/pnas.1812029116. PubMed DOI PMC

Sherrill HE, et al. Pou4f1 defines a subgroup of Type I spiral ganglion neurons and is necessary for normal inner hair cell presynaptic Ca(2+) signaling. J. Neurosci. 2019;39:5284–5298. doi: 10.1523/JNEUROSCI.2728-18.2019. PubMed DOI PMC

Lu CC, Appler JM, Houseman EA, Goodrich LV. Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J. Neurosci. 2011;31:10903–10918. doi: 10.1523/JNEUROSCI.2358-11.2011. PubMed DOI PMC

Appler JM, et al. Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 2013;33:3679–3691. doi: 10.1523/JNEUROSCI.4703-12.2013. PubMed DOI PMC

Nishimura K, Noda T, Dabdoub A. Dynamic expression of Sox2, Gata3, and Prox1 during primary auditory neuron development in the mammalian cochlea. PLoS ONE. 2017;12:e0170568. doi: 10.1371/journal.pone.0170568. PubMed DOI PMC

Li C, et al. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages. Elife. 2020;9:e50491. doi: 10.7554/eLife.50491. PubMed DOI PMC

Yu WM, et al. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife. 2013;2:e01341. doi: 10.7554/eLife.01341. PubMed DOI PMC

Deneris ES, Hobert O. Maintenance of postmitotic neuronal cell identity. Nat. Neurosci. 2014;17:899–907. doi: 10.1038/nn.3731. PubMed DOI PMC

Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods. 2017;14:1083–1086. doi: 10.1038/nmeth.4463. PubMed DOI PMC

Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006;116:615–622. doi: 10.1172/JCI27794. PubMed DOI PMC

Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat. Neurosci. 2002;5:147–154. doi: 10.1038/nn796. PubMed DOI

Goebbels S, et al. Cre/loxP-mediated inactivation of the bHLH transcription factor gene NeuroD/BETA2. Genesis. 2005;42:247–252. doi: 10.1002/gene.20138. PubMed DOI

Yang L, et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development. 2006;133:1575–1585. doi: 10.1242/dev.02322. PubMed DOI PMC

Radde-Gallwitz K, et al. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J. Comp. Neurol. 2004;477:412–421. doi: 10.1002/cne.20257. PubMed DOI PMC

Liu M, et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000;14:2839–2854. doi: 10.1101/gad.840500. PubMed DOI PMC

Kim WY, et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development. 2001;128:417–426. doi: 10.1242/dev.128.3.417. PubMed DOI PMC

Macova I, et al. Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J. Neurosci. 2019;39:984–1004. doi: 10.1523/JNEUROSCI.2557-18.2018. PubMed DOI PMC

Faure L, et al. Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates. Nat. Commun. 2020;11:4175. doi: 10.1038/s41467-020-17929-4. PubMed DOI PMC

Lallemend F, Ernfors P. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci. 2012;35:373–381. doi: 10.1016/j.tins.2012.03.006. PubMed DOI

Hadjab S, et al. A local source of FGF initiates development of the unmyelinated lineage of sensory neurons. J. Neurosci. 2013;33:17656–17666. doi: 10.1523/JNEUROSCI.1090-13.2013. PubMed DOI PMC

Jogi A, Persson P, Grynfeld A, Pahlman S, Axelson H. Modulation of basic helix-loop-helix transcription complex formation by Id proteins during neuronal differentiation. J. Biol. Chem. 2002;277:9118–9126. doi: 10.1074/jbc.M107713200. PubMed DOI

Goldstein ME, Grant P, House SB, Henken DB, Gainer H. Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia. Neuroscience. 1996;71:243–258. doi: 10.1016/0306-4522(95)00404-1. PubMed DOI

Lallemend F, et al. New insights into peripherin expression in cochlear neurons. Neuroscience. 2007;150:212–222. doi: 10.1016/j.neuroscience.2007.08.032. PubMed DOI

Liu Z, Owen T, Zhang L, Zuo J. Dynamic expression pattern of Sonic hedgehog in developing cochlear spiral ganglion neurons. Dev. Dyn. 2010;239:1674–1683. doi: 10.1002/dvdy.22302. PubMed DOI PMC

Bok J, Zenczak C, Hwang CH, Wu DK. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc. Natl Acad. Sci. USA. 2013;110:13869–13874. doi: 10.1073/pnas.1222341110. PubMed DOI PMC

Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development. 2002;129:2495–2505. doi: 10.1242/dev.129.10.2495. PubMed DOI

Yang D, Thalmann I, Thalmann R, Simmons DD. Expression of alpha and beta parvalbumin is differentially regulated in the rat organ of corti during development. J. Neurobiol. 2004;58:479–492. doi: 10.1002/neu.10289. PubMed DOI

Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 2020;15:1484–1506. doi: 10.1038/s41596-020-0292-x. PubMed DOI

Hippenmeyer S, et al. A role for neuregulin1 signaling in muscle spindle differentiation. Neuron. 2002;36:1035–1049. doi: 10.1016/S0896-6273(02)01101-7. PubMed DOI

Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci. 1997;20:159–164. doi: 10.1016/S0166-2236(96)01007-7. PubMed DOI

Fritzsch B, Farinas I, Reichardt LF. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J. Neurosci. 1997;17:6213–6225. doi: 10.1523/JNEUROSCI.17-16-06213.1997. PubMed DOI PMC

Webber JL, et al. Axodendritic versus axosomatic cochlear efferent termination is determined by afferent type in a hierarchical logic of circuit formation. Sci. Adv. 2021;7:abd8637. doi: 10.1126/sciadv.abd8637. PubMed DOI PMC

Defourny J, et al. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nat. Commun. 2013;4:1438. doi: 10.1038/ncomms2445. PubMed DOI

Defourny J. Eph/ephrin signalling in the development and function of the mammalian cochlea. Dev. Biol. 2019;449:35–40. doi: 10.1016/j.ydbio.2019.02.004. PubMed DOI

Kim YJ, et al. EphA7 regulates spiral ganglion innervation of cochlear hair cells. Dev. Neurobiol. 2016;76:452–469. doi: 10.1002/dneu.22326. PubMed DOI PMC

Chen H, et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron. 2000;25:43–56. doi: 10.1016/S0896-6273(00)80870-3. PubMed DOI

Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature. 2000;404:567–573. doi: 10.1038/35007001. PubMed DOI

Zheng L, et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell. 2000;102:377–385. doi: 10.1016/S0092-8674(00)00042-8. PubMed DOI PMC

Ebrahim S, et al. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nat. Commun. 2016;7:10833. doi: 10.1038/ncomms10833. PubMed DOI PMC

Xiong W, et al. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell. 2012;151:1283–1295. doi: 10.1016/j.cell.2012.10.041. PubMed DOI PMC

Avraham KB, et al. The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 1995;11:369–375. doi: 10.1038/ng1295-369. PubMed DOI

von Ameln S, et al. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am. J. Hum. Genet. 2012;91:919–927. doi: 10.1016/j.ajhg.2012.09.002. PubMed DOI PMC

Liu X, et al. Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am. J. Hum. Genet. 2010;86:65–71. doi: 10.1016/j.ajhg.2009.11.015. PubMed DOI PMC

Guipponi M, et al. Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am. J. Pathol. 2007;171:608–616. doi: 10.2353/ajpath.2007.070068. PubMed DOI PMC

Cryns K, et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Hum. Mutat. 2003;22:275–287. doi: 10.1002/humu.10258. PubMed DOI

Verhoeven K, et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat. Genet. 1998;19:60–62. doi: 10.1038/ng0598-60. PubMed DOI

Johnson SL, et al. Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea. J. Neurosci. 2017;37:258–268. doi: 10.1523/JNEUROSCI.2251-16.2016. PubMed DOI PMC

Petitpre C, et al. Genetic and functional diversity of primary auditory afferents. Curr. Opin. Physiol. 2020;18:85–94. doi: 10.1016/j.cophys.2020.09.011. DOI

Johnson SL, et al. Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc. Natl Acad. Sci. USA. 2013;110:8720–8725. doi: 10.1073/pnas.1219578110. PubMed DOI PMC

Clause A, et al. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron. 2014;82:822–835. doi: 10.1016/j.neuron.2014.04.001. PubMed DOI PMC

Gascon E, et al. Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons. J. Neurosci. 2010;30:12414–12423. doi: 10.1523/JNEUROSCI.3135-10.2010. PubMed DOI PMC

Sharma N, et al. The emergence of transcriptional identity in somatosensory neurons. Nature. 2020;577:392–398. doi: 10.1038/s41586-019-1900-1. PubMed DOI PMC

Wu H, et al. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat. Commun. 2021;12:1026. doi: 10.1038/s41467-021-21173-9. PubMed DOI PMC

Wang Y, et al. Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development. 2019;146:dev181750. doi: 10.1242/dev.181750. PubMed DOI PMC

Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int. J. Mol. Sci. 2021;22:4189. doi: 10.3390/ijms22084189. PubMed DOI PMC

Manley GA. Cochlear mechanisms from a phylogenetic viewpoint. Proc. Natl Acad. Sci. USA. 2000;97:11736–11743. doi: 10.1073/pnas.97.22.11736. PubMed DOI PMC

Chiu FC, et al. Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron. 1989;2:1435–1445. doi: 10.1016/0896-6273(89)90189-X. PubMed DOI

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. doi: 10.1186/s13059-017-1382-0. PubMed DOI PMC

Soldatov R, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2014;364:eaas9536. doi: 10.1126/science.aas9536. PubMed DOI

Albergante L, et al. Robust and scalable learning of complex intrinsic dataset geometry via ElPiGraph. Entropy. 2020;22:296. doi: 10.3390/e22030296. PubMed DOI PMC

Hou, W. et al. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Preprint at bioRxiv10.1101/2021.07.10.451910 (2021). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace