Molecular Cascades That Build and Connect Auditory Neurons from Hair Cells to the Auditory Cortex

. 2025 ; 6 (3) : 111-120.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40823538

Grantová podpora
P01 AG051443 NIA NIH HHS - United States
R01 AG060504 NIA NIH HHS - United States

Understanding the development of the auditory system is crucial for uncovering the molecular origins of hearing and its related disorders. During this development, spiral ganglion neurons extend peripheral fibers to cochlear hair cells and central projections to the cochlear nuclei, setting up a tonotopic map that connects the ear to the brainstem, enabling frequency-specific sound perception. This sensory information is then integrated bilaterally through a relay involving the superior olivary complex, lateral lemniscus, inferior colliculus, medial geniculate body, and the auditory cortex. While anatomical connectivity has been well-documented, recent advancements have revealed gene regulatory networks that coordinate the specification, differentiation, and connectivity of auditory neurons. In this review, we examine the molecular cascades guiding auditory system development, emphasizing transcriptional hierarchies and lineage determinants. Insights into these mechanisms enhance our understanding of auditory circuit formation and provide a critical foundation for therapeutic strategies aimed at addressing congenital and acquired hearing loss.

Zobrazit více v PubMed

Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci. 2022. Feb 17;14:814528. PubMed PMC

Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci. 2024. Aug;47(1):1–20. PubMed PMC

Brigande JV. Otoferlin gene therapy restores hearing in deaf children. Mol Ther. 2024. Apr 3;32(4):859–60. PubMed PMC

Carlson RJ, Taiber S, Rubinstein JT. Gene Therapy for Hearing Loss: Which Genes Next? Otol Neurotol. 2025. Mar 1;46(3):239–47. PubMed

Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One. 2010. Feb 23;5(2):e9377. PubMed PMC

Elliott KL, Iskusnykh IY, Chizhikov VV, Fritzsch B. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci Lett. 2023. May 29;806:137244. PubMed PMC

Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, Fritzsch B, et al. Developmental Changes in Peripherin-eGFP Expression in Spiral Ganglion Neurons. Front Cell Neurosci. 2021. Jun 15;15:678113. PubMed PMC

Jing J, Hu M, Ngodup T, Ma Q, Lau SN, Ljungberg MC, et al. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun. 2025. Jan 9;16(1):489. PubMed PMC

Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol. 2020. Apr 24;11:537. PubMed PMC

Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, et al. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res. 2022. Oct 14;50(18):10343–10359. PubMed PMC

Xu J, Li J, Zhang T, Jiang H, Ramakrishnan A, Fritzsch B, et al. Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A. 2021. Mar 23;118(12):e2025196118. PubMed PMC

Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev Biol. 2020. Jan 1;457(1):43–56. PubMed PMC

Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, et al. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development. 2021. Apr 15;148(8):dev195651. PubMed

Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly Required for the Development of Multiple Components of the Mammalian Auditory System. Neuroscience. 2021. Jan 1;452:247–64. PubMed PMC

Duncan JS, Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One. 2013. Apr 16;8(4):e62046. PubMed PMC

Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 2002. Sep 15;16(18):2365–78. PubMed PMC

Mao Y, Reiprich S, Wegner M, Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One. 2014. Apr 9;9(4):e94580. PubMed PMC

Filova I, Bohuslavova R, Tavakoli M, Yamoah EN, Fritzsch B, Pavlinkova G. Early Deletion of Neurod1 Alters Neuronal Lineage Potential and Diminishes Neurogenesis in the Inner Ear. Front Cell Dev Biol. 2022. Feb 17;10:845461. PubMed PMC

Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, et al. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A. 2022. Sep 13;119(37):e2207433119. PubMed PMC

Fritzsch B, Kersigo J, Yang T, Jahan I, Pan N. Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. In: Dabdoub A, Fritzsch B, Popper A, Fay R, Editors. The primary auditory neurons of the mammalian cochlea. Springer Handbook of Auditory Research, vol 52. New York, NY: Springer International Publishing; 2016. P. 49–84.

Kersigo J, Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci. 2015. Mar 18;7:33. PubMed PMC

Zhang H, Li H, Lu M, Wang S, Ma X, Wang F, et al. Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through Kv7.4 channel upsurge in auditory neurons and hair cells. Elife. 2022. Sep 20;11:e76754. PubMed PMC

Elliott KL, Kersigo J, Lee JH, Yamoah EN, Fritzsch B. Sustained Loss of Bdnf Affects Peripheral but Not Central Vestibular Targets. Front Neurol. 2021. Dec 16;12:768456. PubMed PMC

Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun. 2022. Jul 5;13(1):3878. PubMed PMC

Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell. 2023. Feb 27;58(4):306–19.e5. PubMed PMC

Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, Manca M, et al. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc Natl Acad Sci U S A. 2023. Aug;120(31):e2217033120. PubMed PMC

Moser T Presynaptic physiology of cochlear inner hair cells. The Senses. 2020:441–67.

Chen H, Monga M, Fang Q, Slitin L, Neef J, Chepurwar SS, et al. Ca2+ binding to the C2E domain of otoferlin is required for hair cell exocytosis and hearing. Protein Cell. 2024. Apr 1;15(4):305–12. PubMed PMC

Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci. 2021. Apr 18;22(8):4189. PubMed PMC

McGovern MM, Groves AK. Specification and plasticity of mammalian cochlear hair cell progenitors. In Hair Cell Regeneration. Cham: Springer International Publishing; 2023. p. 105–34.

Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol. 2010. Aug 20;10:89. PubMed PMC

Ma Q, Anderson DJ, Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol. 2000. Sep;1(2):129–43. PubMed PMC

Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn. 2006. Sep;235(9):2470–82. PubMed PMC

Fritzsch B, Weng X, Yamoah EN, Qin T, Hui CC, Lebrón-Mora L, Pavlinkova G, et al. Irx3/5 Null Deletion in Mice Blocks Cochlea-Saccule Segregation and Disrupts the Auditory Tonotopic Map. J Comp Neurol. 2024. Dec;532(12):e70008. PubMed PMC

Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, Vochyanova S, et al. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol Neurobiol. 2020. Dec;57(12):5307–23. PubMed PMC

Shimojo H, Masaki T, Kageyama R. The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell. 2024. Aug 5;59(15):1913–23.e6. PubMed

Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol. 2011. Apr 15;352(2):329–40. PubMed

Li S, He S, Lu Y, Jia S, Liu Z. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. Cell Rep. 2023. May 30;42(5):112504. PubMed

Bi Z, Ren M, Zhang Y, He S, Song L, Li X, et al. Revisiting the Potency of Tbx2 Expression in Transforming Outer Hair Cells into Inner Hair Cells at Multiple Ages In Vivo. J Neurosci. 2024. Jun 5;44(23):e1751232024. PubMed PMC

Nakano Y, Wiechert S, Fritzsch B, Bánfi B. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci Alliance. 2020. Oct 21;3(12):e202000841. PubMed PMC

Koo HY, Oh JH, Durán Alonso MB, Hernández IL, González-Vallinas M, Alonso MT, et al. Analysis of Meis2 knockout mice reveals Sonic hedgehog-mediated patterning of the cochlear duct. Dev Dyn. 2025. Apr;254(4):365–72. PubMed

McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of PubMed PMC

Oertel D, Cao X-J. The Ventral Cochlear Nucleus. In: Fritzsch B, editor. The Senses: A Comprehensive Reference (Second Edition). Oxford: Elsevier; 2020. p. 517–32.

Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, et al. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci. 2009. Sep 9;29(36):11123–33. PubMed PMC

Lu H-W, Smith PH, Joris PX. Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proc Natl Acad Sci U S A. 2022. Nov;119(44):e2203748119. PubMed PMC

Trussell LO, Oertel D. Microcircuits of the dorsal cochlear nucleus. In: Oliver DL, Cant NB, Fay RR, Popper AN. The Mammalian Auditory Pathways. Cham: Springer International Publishing; 2018. p. 73–99.

Mukherjee D, Meng X, Kao JPY, Kanold PO. Impaired Hearing and Altered Subplate Circuits During the First and Second Postnatal Weeks of Otoferlin-Deficient Mice. Cereb Cortex. 2022. Jun 16;32(13):2816–30. PubMed PMC

Iskusnykh IY, Steshina EY, Chizhikov VV. Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci. 2016. Mar 2;36(9):2691–710. PubMed PMC

Parameshwarappa V, Siponen MI, Watabe I, Karkaba A, Galazyuk A, Noreña AJ. Noise-induced hearing loss alters potassium-chloride cotransporter KCC2 and GABA inhibition in the auditory centers. Sci Rep. 2024. May 9;14(1):10689. PubMed PMC

Di Bonito M, Studer M. Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development. Front Neural Circuits. 2017. Apr 19;11:18. PubMed PMC

Milinkeviciute G, Cramer K. The Senses: A Comprehensive Reference. 2020.

Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev Biol. 2006. Feb 1;290(1):1–12. PubMed

Driscoll ME, Tadi P. Neuroanatomy, Inferior Colliculus. 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Jan–. PubMed

Tran H-N, Nguyen Q-H, Jeong J-e Loi D-L, Nam YH Kang TH, et al. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ. 2023. Jun;30(6):1563–74. PubMed PMC

Jahan I, Kersigo J, Elliott KL, Fritzsch B. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res. 2021. Apr;384(1):59–72. PubMed PMC

Chumak T, Tothova D, Filova I, Bures Z, Popelar J, Pavlinkova G, et al. Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus. Int J Mol Sci. 2021. Apr 26;22(9):4507. PubMed PMC

Nakamura H Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer. In: Rubenstein J, Chen B, Editors. Patterning and Cell Type Specification in the Developing CNS and PNS. Amsterdam: Academic Press; 2020. p. 87–106.

Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, et al. Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol. 2011. May 1;519(7):1355–70. PubMed PMC

Puelles L, Martínez S, Martínez-De-La-Torre M, Rubenstein JL. Gene maps and related histogenetic domains in the forebrain and midbrain. In: Paxinos G, Editor. The rat nervous system. Amsterdam: Academic Press; 2015. p. 3–24.

Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S. Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. Dev Biol. 2018. Jul 15;439(2):102–11. PubMed PMC

Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, et al. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol. 2022. Sep 6;20(9):e3001563. PubMed PMC

Enard W FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol. 2011. Jun;21(3):415–24. PubMed

Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res. 2019. Feb 15;1705:48–65. PubMed

Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020. Oct 16;370(6514):eabb2153. PubMed PMC

Kanold PO, Luhmann HJ. The subplate and early cortical circuits. Annual review of neuroscience. 2010;33:23–48. PubMed

Goodrich L, Kanold P. Functional circuit development in the auditory system. In: Rubenstein J, Rakic P, Editors. Neural Circuit and Cognitive Development. Amsterdam: Academic Press; 2020. p. 27–55.

Yamoah EN, Pavlinkova G, Fritzsch B. The Development of Speaking and Singing in Infants May Play a Role in Genomics and Dementia in Humans. Brain Sci. 2023. Aug 11;13(8):1190. PubMed PMC

Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Research. 2019. Mar 27;8:F1000 Faculty Rev-345. PubMed PMC

Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, et al. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn. 2005. Jun;233(2):570–83. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...