Molecular Cascades That Build and Connect Auditory Neurons from Hair Cells to the Auditory Cortex
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
P01 AG051443
NIA NIH HHS - United States
R01 AG060504
NIA NIH HHS - United States
PubMed
40823538
PubMed Central
PMC12356050
Knihovny.cz E-zdroje
- Klíčová slova
- Auditory cortex, Brainstem, Cochlear hair cells, Cochlear nuclei, Genetic basis, Spiral ganglion neurons,
- Publikační typ
- časopisecké články MeSH
Understanding the development of the auditory system is crucial for uncovering the molecular origins of hearing and its related disorders. During this development, spiral ganglion neurons extend peripheral fibers to cochlear hair cells and central projections to the cochlear nuclei, setting up a tonotopic map that connects the ear to the brainstem, enabling frequency-specific sound perception. This sensory information is then integrated bilaterally through a relay involving the superior olivary complex, lateral lemniscus, inferior colliculus, medial geniculate body, and the auditory cortex. While anatomical connectivity has been well-documented, recent advancements have revealed gene regulatory networks that coordinate the specification, differentiation, and connectivity of auditory neurons. In this review, we examine the molecular cascades guiding auditory system development, emphasizing transcriptional hierarchies and lineage determinants. Insights into these mechanisms enhance our understanding of auditory circuit formation and provide a critical foundation for therapeutic strategies aimed at addressing congenital and acquired hearing loss.
Zobrazit více v PubMed
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci. 2022. Feb 17;14:814528. PubMed PMC
Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci. 2024. Aug;47(1):1–20. PubMed PMC
Brigande JV. Otoferlin gene therapy restores hearing in deaf children. Mol Ther. 2024. Apr 3;32(4):859–60. PubMed PMC
Carlson RJ, Taiber S, Rubinstein JT. Gene Therapy for Hearing Loss: Which Genes Next? Otol Neurotol. 2025. Mar 1;46(3):239–47. PubMed
Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One. 2010. Feb 23;5(2):e9377. PubMed PMC
Elliott KL, Iskusnykh IY, Chizhikov VV, Fritzsch B. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci Lett. 2023. May 29;806:137244. PubMed PMC
Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, Fritzsch B, et al. Developmental Changes in Peripherin-eGFP Expression in Spiral Ganglion Neurons. Front Cell Neurosci. 2021. Jun 15;15:678113. PubMed PMC
Jing J, Hu M, Ngodup T, Ma Q, Lau SN, Ljungberg MC, et al. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun. 2025. Jan 9;16(1):489. PubMed PMC
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol. 2020. Apr 24;11:537. PubMed PMC
Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, et al. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res. 2022. Oct 14;50(18):10343–10359. PubMed PMC
Xu J, Li J, Zhang T, Jiang H, Ramakrishnan A, Fritzsch B, et al. Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A. 2021. Mar 23;118(12):e2025196118. PubMed PMC
Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev Biol. 2020. Jan 1;457(1):43–56. PubMed PMC
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, et al. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development. 2021. Apr 15;148(8):dev195651. PubMed
Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. Lmx1a and Lmx1b are Redundantly Required for the Development of Multiple Components of the Mammalian Auditory System. Neuroscience. 2021. Jan 1;452:247–64. PubMed PMC
Duncan JS, Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One. 2013. Apr 16;8(4):e62046. PubMed PMC
Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 2002. Sep 15;16(18):2365–78. PubMed PMC
Mao Y, Reiprich S, Wegner M, Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One. 2014. Apr 9;9(4):e94580. PubMed PMC
Filova I, Bohuslavova R, Tavakoli M, Yamoah EN, Fritzsch B, Pavlinkova G. Early Deletion of Neurod1 Alters Neuronal Lineage Potential and Diminishes Neurogenesis in the Inner Ear. Front Cell Dev Biol. 2022. Feb 17;10:845461. PubMed PMC
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, et al. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A. 2022. Sep 13;119(37):e2207433119. PubMed PMC
Fritzsch B, Kersigo J, Yang T, Jahan I, Pan N. Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. In: Dabdoub A, Fritzsch B, Popper A, Fay R, Editors. The primary auditory neurons of the mammalian cochlea. Springer Handbook of Auditory Research, vol 52. New York, NY: Springer International Publishing; 2016. P. 49–84.
Kersigo J, Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci. 2015. Mar 18;7:33. PubMed PMC
Zhang H, Li H, Lu M, Wang S, Ma X, Wang F, et al. Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through Kv7.4 channel upsurge in auditory neurons and hair cells. Elife. 2022. Sep 20;11:e76754. PubMed PMC
Elliott KL, Kersigo J, Lee JH, Yamoah EN, Fritzsch B. Sustained Loss of Bdnf Affects Peripheral but Not Central Vestibular Targets. Front Neurol. 2021. Dec 16;12:768456. PubMed PMC
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun. 2022. Jul 5;13(1):3878. PubMed PMC
Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell. 2023. Feb 27;58(4):306–19.e5. PubMed PMC
Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, Manca M, et al. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc Natl Acad Sci U S A. 2023. Aug;120(31):e2217033120. PubMed PMC
Moser T Presynaptic physiology of cochlear inner hair cells. The Senses. 2020:441–67.
Chen H, Monga M, Fang Q, Slitin L, Neef J, Chepurwar SS, et al. Ca2+ binding to the C2E domain of otoferlin is required for hair cell exocytosis and hearing. Protein Cell. 2024. Apr 1;15(4):305–12. PubMed PMC
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci. 2021. Apr 18;22(8):4189. PubMed PMC
McGovern MM, Groves AK. Specification and plasticity of mammalian cochlear hair cell progenitors. In Hair Cell Regeneration. Cham: Springer International Publishing; 2023. p. 105–34.
Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol. 2010. Aug 20;10:89. PubMed PMC
Ma Q, Anderson DJ, Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol. 2000. Sep;1(2):129–43. PubMed PMC
Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn. 2006. Sep;235(9):2470–82. PubMed PMC
Fritzsch B, Weng X, Yamoah EN, Qin T, Hui CC, Lebrón-Mora L, Pavlinkova G, et al. Irx3/5 Null Deletion in Mice Blocks Cochlea-Saccule Segregation and Disrupts the Auditory Tonotopic Map. J Comp Neurol. 2024. Dec;532(12):e70008. PubMed PMC
Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, Vochyanova S, et al. Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Mol Neurobiol. 2020. Dec;57(12):5307–23. PubMed PMC
Shimojo H, Masaki T, Kageyama R. The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell. 2024. Aug 5;59(15):1913–23.e6. PubMed
Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol. 2011. Apr 15;352(2):329–40. PubMed
Li S, He S, Lu Y, Jia S, Liu Z. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. Cell Rep. 2023. May 30;42(5):112504. PubMed
Bi Z, Ren M, Zhang Y, He S, Song L, Li X, et al. Revisiting the Potency of Tbx2 Expression in Transforming Outer Hair Cells into Inner Hair Cells at Multiple Ages In Vivo. J Neurosci. 2024. Jun 5;44(23):e1751232024. PubMed PMC
Nakano Y, Wiechert S, Fritzsch B, Bánfi B. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci Alliance. 2020. Oct 21;3(12):e202000841. PubMed PMC
Koo HY, Oh JH, Durán Alonso MB, Hernández IL, González-Vallinas M, Alonso MT, et al. Analysis of Meis2 knockout mice reveals Sonic hedgehog-mediated patterning of the cochlear duct. Dev Dyn. 2025. Apr;254(4):365–72. PubMed
McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of PubMed PMC
Oertel D, Cao X-J. The Ventral Cochlear Nucleus. In: Fritzsch B, editor. The Senses: A Comprehensive Reference (Second Edition). Oxford: Elsevier; 2020. p. 517–32.
Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, et al. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci. 2009. Sep 9;29(36):11123–33. PubMed PMC
Lu H-W, Smith PH, Joris PX. Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proc Natl Acad Sci U S A. 2022. Nov;119(44):e2203748119. PubMed PMC
Trussell LO, Oertel D. Microcircuits of the dorsal cochlear nucleus. In: Oliver DL, Cant NB, Fay RR, Popper AN. The Mammalian Auditory Pathways. Cham: Springer International Publishing; 2018. p. 73–99.
Mukherjee D, Meng X, Kao JPY, Kanold PO. Impaired Hearing and Altered Subplate Circuits During the First and Second Postnatal Weeks of Otoferlin-Deficient Mice. Cereb Cortex. 2022. Jun 16;32(13):2816–30. PubMed PMC
Iskusnykh IY, Steshina EY, Chizhikov VV. Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci. 2016. Mar 2;36(9):2691–710. PubMed PMC
Parameshwarappa V, Siponen MI, Watabe I, Karkaba A, Galazyuk A, Noreña AJ. Noise-induced hearing loss alters potassium-chloride cotransporter KCC2 and GABA inhibition in the auditory centers. Sci Rep. 2024. May 9;14(1):10689. PubMed PMC
Di Bonito M, Studer M. Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development. Front Neural Circuits. 2017. Apr 19;11:18. PubMed PMC
Milinkeviciute G, Cramer K. The Senses: A Comprehensive Reference. 2020.
Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev Biol. 2006. Feb 1;290(1):1–12. PubMed
Driscoll ME, Tadi P. Neuroanatomy, Inferior Colliculus. 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Jan–. PubMed
Tran H-N, Nguyen Q-H, Jeong J-e Loi D-L, Nam YH Kang TH, et al. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ. 2023. Jun;30(6):1563–74. PubMed PMC
Jahan I, Kersigo J, Elliott KL, Fritzsch B. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell Tissue Res. 2021. Apr;384(1):59–72. PubMed PMC
Chumak T, Tothova D, Filova I, Bures Z, Popelar J, Pavlinkova G, et al. Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus. Int J Mol Sci. 2021. Apr 26;22(9):4507. PubMed PMC
Nakamura H Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer. In: Rubenstein J, Chen B, Editors. Patterning and Cell Type Specification in the Developing CNS and PNS. Amsterdam: Academic Press; 2020. p. 87–106.
Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, et al. Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol. 2011. May 1;519(7):1355–70. PubMed PMC
Puelles L, Martínez S, Martínez-De-La-Torre M, Rubenstein JL. Gene maps and related histogenetic domains in the forebrain and midbrain. In: Paxinos G, Editor. The rat nervous system. Amsterdam: Academic Press; 2015. p. 3–24.
Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S. Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. Dev Biol. 2018. Jul 15;439(2):102–11. PubMed PMC
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, et al. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol. 2022. Sep 6;20(9):e3001563. PubMed PMC
Enard W FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol. 2011. Jun;21(3):415–24. PubMed
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res. 2019. Feb 15;1705:48–65. PubMed
Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020. Oct 16;370(6514):eabb2153. PubMed PMC
Kanold PO, Luhmann HJ. The subplate and early cortical circuits. Annual review of neuroscience. 2010;33:23–48. PubMed
Goodrich L, Kanold P. Functional circuit development in the auditory system. In: Rubenstein J, Rakic P, Editors. Neural Circuit and Cognitive Development. Amsterdam: Academic Press; 2020. p. 27–55.
Yamoah EN, Pavlinkova G, Fritzsch B. The Development of Speaking and Singing in Infants May Play a Role in Genomics and Dementia in Humans. Brain Sci. 2023. Aug 11;13(8):1190. PubMed PMC
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Research. 2019. Mar 27;8:F1000 Faculty Rev-345. PubMed PMC
Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, et al. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn. 2005. Jun;233(2):570–83. PubMed PMC