Transition from Homochiral Clusters to Racemate Monolayers during 2D Crystallization of Trioxa[11]helicene on Ag(100)
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
200020-163296
Schweizerischer Nationalfonds
20-13692X
Czech Science Foundation
754364
European Union's Horizon 2020 research and innovation program
LM2018110
CzechNanoLab Research Infrastructure
SR/S1/OC-74/2012
Science and Engineering Research Board (SERB), New Delhi
PubMed
33289221
DOI
10.1002/cphc.202000853
Knihovny.cz E-zdroje
- Klíčová slova
- 2D crystallization, chirality, helicenes, scanning tunnelling microscopy, surface science,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phenomenon of chiral crystallization into homochiral crystals is known for more than 170 years, yet it is still poorly understood. Studying crystallization on surfaces under well-defined condition seems a promising approach towards better understanding the intermolecular chiral recognition mechanisms during nucleation and growth. The two-dimensional aggregation of racemic trioxaundecahelicene on the single crystalline silver(100) surface has been investigated with scanning tunneling microscopy and with non-contact atomic force microscopy, as well as molecular modeling simulations. A transition from homochiral cluster motifs to heterochiral assembly into large islands with increasing coverage is observed. Force field modelling confirms higher stability of heterochiral arrangements from twelve molecules on. Results are discussed with respect to previous findings for the all-carbon heptahelicene on the same surface.
Zobrazit více v PubMed
J. Jacques, A. Collet, S. H. Wilen, Enantiomers, Racemates, and Resolutions, Krieger Pub. Co., Malabar, FL, 1994.
V. M. Goldschmidt, Z. Kristallogr. 1915, 55, 123-131;
B. S. Green, M. Knossov, Science 1981, 214, 795-797;
K.-H. Ernst, F. R. W. P. Wild, O. Blacque, H. Berke, Angew. Chem. Int. Ed. 2011, 50, 10780-10787;
Angew. Chem. 2011, 123, 10970-10977;
K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, B. Kahr, J. Am. Chem. Soc. 2003, 125, 14825-14831.
G. Coquerel, Enantiomer 2000, 5, 481-498.
O. Wallach, Justus Liebigs Ann. Chem. 1895, 286, 119-143.
K.-H. Ernst, Isr. J. Chem. 2016, 57, 24-30.
C. P. Brock, W. B. Schweizer, J. D. Dunitz, J. Am. Chem. Soc. 1991, 113, 9811-9820.
F. Zaera, Chem. Soc. Rev. 2017, 46, 7374-7398;
K.-H. Ernst, Surf. Sci. 2013, 613, 1-5;
R. Raval, Chem. Soc. Rev. 2009, 38, 707-721.
S. De Feyter, F. C. De Schryver, Chem. Soc. Rev. 2003, 32, 139-150.
M. Lahav, L. Leiserowitz, Angew. Chem. Int. Ed. Engl. 1999, 38, 2533-2536.
S. Dutta, A. J. Gellman, Chem. Soc. Rev. 2017, 46, 7787-7839.
K.-H. Ernst, Acc. Chem. Res. 2016, 49, 1182-1190.
Y. Yang, R. C. da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics, 2013, 7, 634-638;
O. Stetsovych, P. Mutombo, M. Švec, M. Šámal, J. Nejedlý, I. Císarová, H. Vázquez, M. Moro-Lagares, J. Berger, J. Vacek, I. G. Stará, I. Starý, P. Jelínek, J. Am. Chem. Soc. 2018,140, 940-946;
M. Kettner, V. V. Maslyuk, D. Nürenberg, J. Seibel, R. Gutierrez, G. Cuniberti, K.-H. Ernst, H. Zacharias, J. Phys. Chem. Lett. 2018, 9, 2025-2030;
V. Kiran, S. P. Mathew, S. R. Cohen, I. Hernández Delgado, J. Lacour, R. Naaman, Adv. Mater. 2016, 28, 1957-1962.
H. Tsuji, C. Mitsui, L. Ilies, Y. Sato, E. Nakamura, J. Am. Chem. Soc. 2007, 129, 11902-11903;
C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya, E. Nakamura, J. Am. Chem. Soc. 2012, 134, 5448-5451.
M. Shyam Sundar, A. V. Bedekar, Org. Lett. 2015, 17, 5808-5811.
M. Parschau, R. Fasel, K.-H. Ernst, Cryst. Growth Des. 2008, 8, 1890-1896;
R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449-452.
J. Seibel, M. Parschau, K.-H. Ernst, J. Phys. Chem. C 2014, 118, 29135-29141;
A. Mairena, J. I. Mendieta, O. Stetsovych, A. Terfort, I. G. Stará, I. Starý, P. Jelínek, K.-H. Ernst, Chem. Commun. 2019, 55, 10595-10598.
M. Stöhr, S. Boz, M. Schär, M.-T. Nguyen, C. A. Pignedoli, D. Passerone, W. B. Schweizer, C. Thilgen, T. A. Jung, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 9982-9986;
Angew. Chem. 2011, 123, 10158-10162.
J. Seibel, L. Zoppi, K.-H. Ernst, Chem. Commun. 2014, 50, 8751-8753.
H. Ascolani, M. W. van der Meijden, L. J. Cristina, J. E. Gayone, R. M. Kellogg, J. D. Fuhr, M. Lingenfelder, Chem. Commun. 2014, 50, 13907-13909.
J. D. Fuhr, M. W. van der Meijden, L. J. Cristina, L. M. Rodriguez, R. M. Kellogg, J. E. Gayone, H. Ascolani, M. Lingenfelder, Chem. Commun. 2017, 53, 130-133;
M. W. van der Meijden, E. Gelens, N. M. Quirós, J. D. Fuhr, J. E. Gayone, H. Ascolani, K. Wurst, M. Lingenfelder, R. M. Kellogg, Chem. Eur. J. 2015, 22, 1484-1492.
M. Böhringer, W. D. Schneider, R. Berndt, Angew. Chem. Int. Ed. 2000, 39, 792-795;
Angew. Chem. 2000, 112, 821-825;
W. Mamdouh, M. Dong, R. E. A. Kelly, L. N. Kantorovich, F. Besenbacher, J. Phys. Chem. B 2007, 111, 12048-12052;
R. Cortés, A. Mascaraque, P. Schmidt-Weber, H. Dil, T. U. Kampen, K. Horn, Nano Lett. 2008, 8, 4162-4167;
T. G. Gopakumar, F. Matino, B. Schwager, A. Bannwarth, F. Tuczek, R. Berndt, J. Phys. Chem. C 2010, 114, 18247-18251;
F. Vidal, E. Delvigne, S. Stepanow, N. Lin, J. V. Barth, K. Kern, J. Am. Chem. Soc. 2005, 127, 10101-10106.
M. Ortega Lorenzo, S. Haq, T. Bertrams, P. Murray, R. Raval, C. J. Baddeley, J. Phys. Chem. B 1999, 103, 10661-10669.
S. Romer, B. Behzadi, R. Fasel, K.-H. Ernst, Chem. Eur. J. 2005, 11, 4149-4154.
J. Seibel, M. Parschau, K.-H. Ernst, J. Am. Chem. Soc. 2015, 137, 7970-7973.
M. Parschau, K.-H. Ernst, Angew. Chem. Int. Ed. Engl. 2015, 54, 14422-14426;
A. Mairena, L. Zoppi, J. Seibel, A. F. Tröster, K. Grenader, M. Parschau, A. Terfort, K.-H. Ernst, ACS Nano 2017, 11, 865-871.
L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 2009, 325, 1110-1114;
P. Jelínek, J. Phys.: Condens. Matter 2017, 29, 343002/1-18.
P. Hapala, R. Temirov, F. S. Tautz, P. Jelínek, Phys. Rev. Lett. 2014, 113, 226101/1-5;
P. Hapala, R. Temirov, F. S. Tautz, P. Jelínek, Phys. Rev. Lett. 2015, 115, 079903/1;
P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, P. Jelínek, Phys. Rev. B 2014, 90, 085421/1-9.
The (2×2) transformation matrix, linking the adsorbate lattice vectors to the substrate lattice vectors, is written here (upper row, lower row). See L. Merz, K.-H. Ernst, Surf. Sci. 2010, 604, 1049-1054 for details.
J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247-260;
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2005, 25, 1157-1174.
B. R. Miller III, T. D. McGee Jr., J. M. Swails, N. Homeyer, H. Gohlke, A. E. Roitberg, J. Chem. Theory Comput. 2012, 8, 3314-3321.
J. P. Lewis, P. Jelínek, J. Ortega, A. Demkov, D. G. Trabada, B. Haycock, H. Wang, G. Adams, J. K. Tomfohr, E. Abad, H. Wang, D. A. Drabold, Phys. Status Solidi B 2011, 248, 1989-2007.