Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Assessing Human Mobility by Constructing a Skeletal Database and Augmenting it Using a Generative Adversarial Network (GAN) Simulator

Y. Segal, O. Hadar, L. Lhotska

. 2022 ; 299 (-) : 97-103. [pub] 2022Nov03

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032742

This paper presents a neural network simulator based on anonymized patient motions that measures, categorizes, and infers human gestures based on a library of anonymized patient motions. There is a need for a sufficient training set for deep learning applications (DL). Our proposal is to extend a database that includes a limited number of videos of human physiotherapy activities with synthetic data. As a result of our posture generator, we are able to generate skeletal vectors that depict human movement. A human skeletal model is generated by using OpenPose (OP) from multiple-person videos and photographs. In every video frame, OP represents each human skeletal position as a vector in Euclidean space. The GAN is used to generate new samples and control the parameters of the motion. The joints in our skeletal model have been restructured to emphasize their linkages using depth-first search (DFS), a method for searching tree structures. Additionally, this work explores solutions to common problems associated with the acquisition of human gesture data, such as synchronizing activities and linking them to time and space. A new simulator is proposed that generates a sequence of virtual coordinated human movements based upon a script.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032742
003      
CZ-PrNML
005      
20230131151617.0
007      
ta
008      
230120s2022 ne f 000 0|eng||
009      
AR
024    7_
$a 10.3233/SHTI220967 $2 doi
035    __
$a (PubMed)36325850
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Segal, Yoram $u Department of Systems and Communication Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
245    10
$a Assessing Human Mobility by Constructing a Skeletal Database and Augmenting it Using a Generative Adversarial Network (GAN) Simulator / $c Y. Segal, O. Hadar, L. Lhotska
520    9_
$a This paper presents a neural network simulator based on anonymized patient motions that measures, categorizes, and infers human gestures based on a library of anonymized patient motions. There is a need for a sufficient training set for deep learning applications (DL). Our proposal is to extend a database that includes a limited number of videos of human physiotherapy activities with synthetic data. As a result of our posture generator, we are able to generate skeletal vectors that depict human movement. A human skeletal model is generated by using OpenPose (OP) from multiple-person videos and photographs. In every video frame, OP represents each human skeletal position as a vector in Euclidean space. The GAN is used to generate new samples and control the parameters of the motion. The joints in our skeletal model have been restructured to emphasize their linkages using depth-first search (DFS), a method for searching tree structures. Additionally, this work explores solutions to common problems associated with the acquisition of human gesture data, such as synchronizing activities and linking them to time and space. A new simulator is proposed that generates a sequence of virtual coordinated human movements based upon a script.
650    _2
$a lidé $7 D006801
650    12
$a neuronové sítě $7 D016571
650    _2
$a databáze faktografické $7 D016208
650    12
$a pohyb $7 D009068
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hadar, Ofer $u Department of Systems and Communication Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
700    1_
$a Lhotska, Lenka $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
773    0_
$w MED00180836 $t Studies in health technology and informatics $x 1879-8365 $g Roč. 299, č. - (2022), s. 97-103
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36325850 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151613 $b ABA008
999    __
$a ok $b bmc $g 1891466 $s 1184077
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 299 $c - $d 97-103 $e 2022Nov03 $i 1879-8365 $m Studies in health technology and informatics $n Stud Health Technol Inform $x MED00180836
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...