Unbalanced 2D Chiral Crystallization of Pentahelicene Propellers and Their Planarization into Nanographenes
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
182082
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PubMed
34042228
PubMed Central
PMC8362048
DOI
10.1002/chem.202101223
Knihovny.cz E-resources
- Keywords
- graphene, helicenes, on-surface chemistry, polycyclic aromatic hydrocarbons, scanning tunneling microscopy,
- Publication type
- Journal Article MeSH
The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.
Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
Aix Marseille Univ CNRS CINAM Marseille France
Department of Chemistry University of Zurich 8057 Zurich Switzerland
See more in PubMed
Jacques J., Collet A., Wilen S. H., Enantiomers, racemates, and resolutions, Krieger Pub. Co., Malabar, 1994.
Green B. S., Knossov M., Science 1981, 214, 795–797; PubMed
Ernst K.-H., Wild F. R. W. P., Blacque O., Berke H., Angew. Chem. Int. Ed. 2011, 50, 10780–10787; PubMed
Angew. Chem. 2011, 123, 10970–10977.
Wallach O., Justus Liebigs Ann. Chem. 1895, 286, 119–143;
Ernst K.-H., Isr. J. Chem. 2016, 57, 24–30;
Brock C. P., Schweizer W. B., Dunitz J. D., J. Am. Chem. Soc. 1991, 113, 9811–9820.
Dutta S., Gellman A. J., Chem. Soc. Rev. 2017, 46, 7787–7839; PubMed
Raval R., Chem. Soc. Rev. 2009, 38, 707–721; PubMed
Ernst K.-H., Phys. Status Solidi B 2012, 249, 2057–2088;
Elemans J. A. A. W., De Cat I., Xu H., De Feyter S., Chem. Soc. Rev. 2009, 38, 722–736; PubMed
Tobe Y., Tahara K., De Feyter S., Chem. Commun. 2021, 57, 962–977. PubMed
De Feyter S., De Schryver F. C., J. Phys. Chem. B 2005, 109, 4290–4302. PubMed
Gingras M., Chem. Soc. Rev. 2013, 42, 1051–1095; PubMed
Hoff B., Gingras M., Peresutti R., Henry C. R., Foster A. S., Barth C., J. Phys. Chem. C 2014, 118, 14569–14578;
Ernst K.-H., Acc. Chem. Res. 2016, 49, 1182–1190. PubMed
Kiran V., Mathew S. P., Cohen S. R., Hernández Delgado I., Lacour J., Naaman R., Adv. Mater. 2016, 28, 1957–1962; PubMed
Kettner M., Maslyuk V. V., Nürenberg D., Seibel J., Gutierrez R., Cuniberti G., Ernst K.-H., Zacharias H., J. Phys. Chem. Lett. 2018, 9, 2025–2030; PubMed
Stetsovych O., Mutombo P., Švec M., Šámal M., Nejedlý J., Císařová I., Vázquez H., Moro-Lagares M., Berger J., Vacek J., Stará I. G., Starý I., Jelínek P., J. Am. Chem. Soc. 2018, 140, 940–946; PubMed
Yang Y., da Costa R. C., Fuchter M. J., Campbell A. J., Nat. Photonics 2013, 7, 634–638.
Seibel J., Parschau M., Ernst K.-H., J. Phys. Chem. C 2014, 118, 29135–29141;
Fasel R., Parschau M., Ernst K.-H., Nature 2006, 439, 449–452. PubMed
Seibel J., Zoppi L., Ernst K.-H., Chem. Commun. 2014, 50, 8751–8753. PubMed
Seibel J., Parschau M., Ernst K.-H., J. Am. Chem. Soc. 2015, 137, 7970–7973; PubMed
Irziqat B., Berger J., Mendieta-Moreno J. I., Sundar M. S., Bedekar A. V., Ernst K.-H., ChemPhysChem 2020, 55, 293–297. PubMed
Fuhr J. D., van der Meijden M. W., Cristina L. J., Rodriguez L. M., Kellogg R. M., Gayone J. E., Ascolani H., Lingenfelder M., Chem. Commun. 2017, 53, 130–133. PubMed
Stöhr M., Boz S., Schär M., Nguyen M.-T., Pignedoli C. A., Passerone D., Schweizer W. B., Thilgen C., Jung T. A., Diederich F., Angew. Chem. Int. Ed. 2011, 50, 9982–9986; PubMed
Angew. Chem. 2011,123, 10158–10162.
Mairena A., Mendieta J. I., Stetsovych O., Terfort A., Stará I. G., Starý I., Jelínek P., Ernst K.-H., Chem. Commun. 2019, 55, 10595–10598. PubMed
Hosokawa T., Takahashi Y., Matsushima T., Watanabe S., Kikkawa S., Azumaya I., Tsurusaki A., Kamikawa K., J. Am. Chem. Soc. 2017, 139, 18512–18521; PubMed
Berezhnaia V., Roy M., Vanthuyne N., Villa M., Naubron J.-V., Rodriguez J., Coquerel Y., Gingras M., J. Am. Chem. Soc. 2017, 139, 18508–18511. PubMed
Zuzak R., Castro-Esteban J., Brandimarte P., Engelund M., Cobas A., Piątkowski P., Kolmer M., Pérez D., Guitián E., Szymonski M., Sánchez-Portal D., Godlewski S., Peña D., Chem. Commun. 2018, 54, 10256–10259. PubMed
Chen H., Tao L., Wang D., Wu Z.-Y., Zhang J.-L., Gao S., Xiao W., Du S., Ernst K.-H., Gao H.-J., Angew. Chem. Int. Ed. 2020, 59, 17413–17416; PubMed
Angew. Chem. 2020,132, 17566–17569.
Wäckerlin C., Gallardo A., Mairena A., Baljozović M., Cahlík A., Antalík A., Brabec J., Veis L., Nachtigallová D., Jelínek P., Ernst K.-H., ACS Nano 2020, 14, 16735–16742; PubMed
Mairena A., Baljozovic M., Kawecki M., Grenader K., Wienke M., Martin K., Bernard L., Avarvari N., Terfort A., Ernst K.-H., Wäckerlin C., Chem. Sci. 2019, 10, 2998–3004. PubMed PMC
Loos M., Gerber C., Corona F., Hollender J., Singer H., Anal. Chem. 2015, 87, 5738–5744. PubMed
Li J., Martin K., Avarvari N., Wäckerlin C., Ernst K.-H., Chem. Commun. 2018, 54, 7948–7951. PubMed