• This record comes from PubMed

Unbalanced 2D Chiral Crystallization of Pentahelicene Propellers and Their Planarization into Nanographenes

. 2021 Jul 16 ; 27 (40) : 10251-10254. [epub] 20210608

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
182082 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.

See more in PubMed

Jacques J., Collet A., Wilen S. H., Enantiomers, racemates, and resolutions, Krieger Pub. Co., Malabar, 1994.

Green B. S., Knossov M., Science 1981, 214, 795–797; PubMed

Ernst K.-H., Wild F. R. W. P., Blacque O., Berke H., Angew. Chem. Int. Ed. 2011, 50, 10780–10787; PubMed

Angew. Chem. 2011, 123, 10970–10977.

Wallach O., Justus Liebigs Ann. Chem. 1895, 286, 119–143;

Ernst K.-H., Isr. J. Chem. 2016, 57, 24–30;

Brock C. P., Schweizer W. B., Dunitz J. D., J. Am. Chem. Soc. 1991, 113, 9811–9820.

Dutta S., Gellman A. J., Chem. Soc. Rev. 2017, 46, 7787–7839; PubMed

Raval R., Chem. Soc. Rev. 2009, 38, 707–721; PubMed

Ernst K.-H., Phys. Status Solidi B 2012, 249, 2057–2088;

Elemans J. A. A. W., De Cat I., Xu H., De Feyter S., Chem. Soc. Rev. 2009, 38, 722–736; PubMed

Tobe Y., Tahara K., De Feyter S., Chem. Commun. 2021, 57, 962–977. PubMed

De Feyter S., De Schryver F. C., J. Phys. Chem. B 2005, 109, 4290–4302. PubMed

Gingras M., Chem. Soc. Rev. 2013, 42, 1051–1095; PubMed

Hoff B., Gingras M., Peresutti R., Henry C. R., Foster A. S., Barth C., J. Phys. Chem. C 2014, 118, 14569–14578;

Ernst K.-H., Acc. Chem. Res. 2016, 49, 1182–1190. PubMed

Kiran V., Mathew S. P., Cohen S. R., Hernández Delgado I., Lacour J., Naaman R., Adv. Mater. 2016, 28, 1957–1962; PubMed

Kettner M., Maslyuk V. V., Nürenberg D., Seibel J., Gutierrez R., Cuniberti G., Ernst K.-H., Zacharias H., J. Phys. Chem. Lett. 2018, 9, 2025–2030; PubMed

Stetsovych O., Mutombo P., Švec M., Šámal M., Nejedlý J., Císařová I., Vázquez H., Moro-Lagares M., Berger J., Vacek J., Stará I. G., Starý I., Jelínek P., J. Am. Chem. Soc. 2018, 140, 940–946; PubMed

Yang Y., da Costa R. C., Fuchter M. J., Campbell A. J., Nat. Photonics 2013, 7, 634–638.

Seibel J., Parschau M., Ernst K.-H., J. Phys. Chem. C 2014, 118, 29135–29141;

Fasel R., Parschau M., Ernst K.-H., Nature 2006, 439, 449–452. PubMed

Seibel J., Zoppi L., Ernst K.-H., Chem. Commun. 2014, 50, 8751–8753. PubMed

Seibel J., Parschau M., Ernst K.-H., J. Am. Chem. Soc. 2015, 137, 7970–7973; PubMed

Irziqat B., Berger J., Mendieta-Moreno J. I., Sundar M. S., Bedekar A. V., Ernst K.-H., ChemPhysChem 2020, 55, 293–297. PubMed

Fuhr J. D., van der Meijden M. W., Cristina L. J., Rodriguez L. M., Kellogg R. M., Gayone J. E., Ascolani H., Lingenfelder M., Chem. Commun. 2017, 53, 130–133. PubMed

Stöhr M., Boz S., Schär M., Nguyen M.-T., Pignedoli C. A., Passerone D., Schweizer W. B., Thilgen C., Jung T. A., Diederich F., Angew. Chem. Int. Ed. 2011, 50, 9982–9986; PubMed

Angew. Chem. 2011,123, 10158–10162.

Mairena A., Mendieta J. I., Stetsovych O., Terfort A., Stará I. G., Starý I., Jelínek P., Ernst K.-H., Chem. Commun. 2019, 55, 10595–10598. PubMed

Hosokawa T., Takahashi Y., Matsushima T., Watanabe S., Kikkawa S., Azumaya I., Tsurusaki A., Kamikawa K., J. Am. Chem. Soc. 2017, 139, 18512–18521; PubMed

Berezhnaia V., Roy M., Vanthuyne N., Villa M., Naubron J.-V., Rodriguez J., Coquerel Y., Gingras M., J. Am. Chem. Soc. 2017, 139, 18508–18511. PubMed

Zuzak R., Castro-Esteban J., Brandimarte P., Engelund M., Cobas A., Piątkowski P., Kolmer M., Pérez D., Guitián E., Szymonski M., Sánchez-Portal D., Godlewski S., Peña D., Chem. Commun. 2018, 54, 10256–10259. PubMed

Chen H., Tao L., Wang D., Wu Z.-Y., Zhang J.-L., Gao S., Xiao W., Du S., Ernst K.-H., Gao H.-J., Angew. Chem. Int. Ed. 2020, 59, 17413–17416; PubMed

Angew. Chem. 2020,132, 17566–17569.

Wäckerlin C., Gallardo A., Mairena A., Baljozović M., Cahlík A., Antalík A., Brabec J., Veis L., Nachtigallová D., Jelínek P., Ernst K.-H., ACS Nano 2020, 14, 16735–16742; PubMed

Mairena A., Baljozovic M., Kawecki M., Grenader K., Wienke M., Martin K., Bernard L., Avarvari N., Terfort A., Ernst K.-H., Wäckerlin C., Chem. Sci. 2019, 10, 2998–3004. PubMed PMC

Loos M., Gerber C., Corona F., Hollender J., Singer H., Anal. Chem. 2015, 87, 5738–5744. PubMed

Li J., Martin K., Avarvari N., Wäckerlin C., Ernst K.-H., Chem. Commun. 2018, 54, 7948–7951. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...