Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus

. 2021 Apr 26 ; 22 (9) : . [epub] 20210426

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33925933

Grantová podpora
20-06927S Grantová Agentura České Republiky
86652036 Akademie Věd České Republiky

The LIM homeodomain transcription factor ISL1 is essential for the different aspects of neuronal development and maintenance. In order to study the role of ISL1 in the auditory system, we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC). We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice, compared to wild type animals. The results further characterize abnormal sound processing in the IC of Tg mice and demonstrate that major changes occur on the side of inhibition.

Zobrazit více v PubMed

Felix R.A., Gourevitch B., Portfors C.V. Subcortical pathways: Towards a better understanding of auditory disorders. Hear. Res. 2018;362:48–60. doi: 10.1016/j.heares.2018.01.008. PubMed DOI PMC

Ono M., Bishop D.C., Oliver D.L. Identified GABAergic and Glutamatergic Neurons in the Mouse Inferior Colliculus Share Similar Response Properties. J. Neurosci. 2017;37:8952–8964. doi: 10.1523/JNEUROSCI.0745-17.2017. PubMed DOI PMC

Syka J., Popelar J. Inferior colliculus in the rat: Neuronal responses to stimulation of the auditory cortex. Neurosci. Lett. 1984;51:235–240. doi: 10.1016/0304-3940(84)90557-3. PubMed DOI

Aitkin L.M., Kenyon C.E., Philpott P. The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J. Comp. Neurol. 1981;196:25–40. doi: 10.1002/cne.901960104. PubMed DOI

Merchan M., Aguilar L.A., Lopez-Poveda E.A., Malmierca M.S. The inferior colliculus of the rat: Quantitative immunocytochemical study of GABA and glycine. Neuroscience. 2005;136:907–925. doi: 10.1016/j.neuroscience.2004.12.030. PubMed DOI

Oliver D.L., Winer J.A., Beckius G.E., Saint Marie R.L. Morphology of GABAergic neurons in the inferior colliculus of the cat. J. Comp. Neurol. 1994;340:27–42. doi: 10.1002/cne.903400104. PubMed DOI

Ouda L., Profant O., Syka J. Age-related changes in the central auditory system. Cell Tissue Res. 2015;361:337–358. doi: 10.1007/s00441-014-2107-2. PubMed DOI

Ouda L., Syka J. Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front. Neural Circuits. 2012;6:68. doi: 10.3389/fncir.2012.00068. PubMed DOI PMC

Pal I., Paltati C.R.B., Kaur C., Saini S., Kumar P., Jacob T.G., Bhardwaj D.N., Roy T.S. Morphological and neurochemical changes in GABAergic neurons of the aging human inferior colliculus. Hear. Res. 2019;377:318–329. doi: 10.1016/j.heares.2019.02.005. PubMed DOI

Ono M., Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J. Exp. Neurosci. 2018;12 doi: 10.1177/1179069518818230. PubMed DOI PMC

Pfaff S.L., Mendelsohn M., Stewart C.L., Edlund T., Jessell T.M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996;84:309–320. doi: 10.1016/S0092-8674(00)80985-X. PubMed DOI

Sun Y., Dykes I.M., Liang X., Eng S.R., Evans S.M., Turner E.E. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 2008;11:1283–1293. doi: 10.1038/nn.2209. PubMed DOI PMC

Lin L., Bu L., Cai C.L., Zhang X., Evans S. Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev. Biol. 2006;295:756–763. doi: 10.1016/j.ydbio.2006.03.053. PubMed DOI

Cai C.L., Liang X., Shi Y., Chu P.H., Pfaff S.L., Chen J., Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 2003;5:877–889. doi: 10.1016/S1534-5807(03)00363-0. PubMed DOI PMC

Elshatory Y., Everhart D., Deng M., Xie X., Barlow R.B., Gan L. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J. Neurosci. 2007;27:12707–12720. doi: 10.1523/JNEUROSCI.3951-07.2007. PubMed DOI PMC

Whitney I.E., Raven M.A., Ciobanu D.C., Poche R.A., Ding Q., Elshatory Y., Gan L., Williams R.W., Reese B.E. Genetic modulation of horizontal cell number in the mouse retina. Proc. Natl. Acad. Sci. USA. 2011;108:9697–9702. doi: 10.1073/pnas.1103253108. PubMed DOI PMC

Hobert O., Westphal H. Functions of LIM-homeobox genes. Trends Genet. 2000;16:75–83. doi: 10.1016/S0168-9525(99)01883-1. PubMed DOI

Pfeffer P.L., Payer B., Reim G., di Magliano M.P., Busslinger M. The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development. 2002;129:307–318. doi: 10.1242/dev.129.2.307. PubMed DOI

Favor J., Sandulache R., Neuhauser-Klaus A., Pretsch W., Chatterjee B., Senft E., Wurst W., Blanquet V., Grimes P., Sporle R., et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. USA. 1996;93:13870–13875. doi: 10.1073/pnas.93.24.13870. PubMed DOI PMC

Bouchard M., de Caprona D., Busslinger M., Xu P., Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev. Biol. 2010;10:89. doi: 10.1186/1471-213X-10-89. PubMed DOI PMC

Chumak T., Bohuslavova R., Macova I., Dodd N., Buckiova D., Fritzsch B., Syka J., Pavlinkova G. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol. Neurobiol. 2016;53:2368–2383. doi: 10.1007/s12035-015-9215-1. PubMed DOI

Bohuslavova R., Dodd N., Macova I., Chumak T., Horak M., Syka J., Fritzsch B., Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol. Neurobiol. 2017;54:1352–1368. doi: 10.1007/s12035-016-9716-6. PubMed DOI PMC

Zhou X., Jen P.H., Seburn K.L., Frankel W.N., Zheng Q.Y. Auditory brainstem responses in 10 inbred strains of mice. Brain Res. 2006;1091:16–26. doi: 10.1016/j.brainres.2006.01.107. PubMed DOI PMC

Zheng Q.Y., Johnson K.R., Erway L.C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 1999;130:94–107. doi: 10.1016/S0378-5955(99)00003-9. PubMed DOI PMC

Melcher J.R., Guinan J.J., Jr., Knudson I.M., Kiang N.Y. Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes. Hear. Res. 1996;93:28–51. doi: 10.1016/0378-5955(95)00179-4. PubMed DOI

Land R., Burghard A., Kral A. The contribution of inferior colliculus activity to the auditory brainstem response (ABR) in mice. Hear. Res. 2016;341:109–118. doi: 10.1016/j.heares.2016.08.008. PubMed DOI

Tan X., Wang X., Yang W., Xiao Z. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hear. Res. 2008;235:90–104. doi: 10.1016/j.heares.2007.10.002. PubMed DOI

Chumak T., Ruttiger L., Lee S.C., Campanelli D., Zuccotti A., Singer W., Popelar J., Gutsche K., Geisler H.S., Schraven S.P., et al. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury. Mol. Neurobiol. 2016;53:5607–5627. doi: 10.1007/s12035-015-9474-x. PubMed DOI PMC

Kuo R.I., Wu G.Y.K. The Generation of Direction Selectivity in the Auditory System. Neuron. 2012;73:1016–1027. doi: 10.1016/j.neuron.2011.11.035. PubMed DOI

Pollak G.D., Xie R.L., Gittelman J.X., Andoni S., Li N. The dominance of inhibition in the inferior colliculus. Hear. Res. 2011;274:27–39. doi: 10.1016/j.heares.2010.05.010. PubMed DOI PMC

Idrizbegovic E., Bogdanovic N., Canlon B. Sound stimulation increases calcium-binding protein immunoreactivity in the inferior colliculus in mice. Neurosci. Lett. 1999;259:49–52. doi: 10.1016/S0304-3940(98)00911-2. PubMed DOI

Fredrich M., Reisch A., Illing R.B. Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp. Brain Res. 2009;195:241–260. doi: 10.1007/s00221-009-1776-7. PubMed DOI

Xie R., Meitzen J., Pollak G.D. Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. J. Neurophysiol. 2005;94:4019–4037. doi: 10.1152/jn.00688.2005. PubMed DOI

D’Angelo W.R., Sterbing S.J., Ostapoff E.M., Kuwada S. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus. J. Neurophysiol. 2005;93:3390–3400. doi: 10.1152/jn.00956.2004. PubMed DOI

Palmer A.R., Shackleton T.M., Sumner C.J., Zobay O., Rees A. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes. J. Physiol. 2013;591:4003–4025. doi: 10.1113/jphysiol.2013.255943. PubMed DOI PMC

Alkhatib A., Biebel U.W., Smolders J.W. Inhibitory and excitatory response areas of neurons in the central nucleus of the inferior colliculus in unanesthetized chinchillas. Exp. Brain Res. 2006;174:124–143. doi: 10.1007/s00221-006-0424-8. PubMed DOI

Egorova M., Ehret G., Vartanian I., Esser K.H. Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics. Exp. Brain Res. 2001;140:145–161. doi: 10.1007/s002210100786. PubMed DOI

Le Beau F.E., Rees A., Malmierca M.S. Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J. Neurophysiol. 1996;75:902–919. doi: 10.1152/jn.1996.75.2.902. PubMed DOI

LeBeau F.E., Malmierca M.S., Rees A. Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J. Neurosci. 2001;21:7303–7312. doi: 10.1523/JNEUROSCI.21-18-07303.2001. PubMed DOI PMC

Yang L., Pollak G.D., Resler C. GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J. Neurophysiol. 1992;68:1760–1774. doi: 10.1152/jn.1992.68.5.1760. PubMed DOI

Williams A.J., Fuzessery Z.M. Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat. J. Neurophysiol. 2011;106:2523–2535. doi: 10.1152/jn.00569.2011. PubMed DOI PMC

Park T.J., Pollak G.D. GABA shapes a topographic organization of response latency in the mustache bat’s inferior colliculus. J. Neurosci. 1993;13:5172–5187. doi: 10.1523/JNEUROSCI.13-12-05172.1993. PubMed DOI PMC

Palombi P.S., Caspary D.M. GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. J. Neurophysiol. 1996;75:2211–2219. doi: 10.1152/jn.1996.75.6.2211. PubMed DOI

Grimsley C.A., Sanchez J.T., Sivaramakrishnan S. Midbrain local circuits shape sound intensity codes. Front. Neural Circuit. 2013;7:174. doi: 10.3389/fncir.2013.00174. PubMed DOI PMC

Andressen C., Blumcke I., Celio M.R. Calcium-binding proteins: Selective markers of nerve cells. Cell Tissue Res. 1993;271:181–208. doi: 10.1007/BF00318606. PubMed DOI

Baimbridge K.G., Celio M.R., Rogers J.H. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15:303–308. doi: 10.1016/0166-2236(92)90081-I. PubMed DOI

Fuentes-Santamaria V., Alvarado J.C., Brunso-Bechtold J.K., Henkel C.K. Upregulation of calretinin immunostaining in the ferret inferior colliculus after cochlear ablation. J. Comp. Neurol. 2003;460:585–596. doi: 10.1002/cne.10676. PubMed DOI

Bures Z., Bartosova J., Lindovsky J., Chumak T., Popelar J., Syka J. Acoustical enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. Eur. J. Neurosci. 2014;40:3674–3683. doi: 10.1111/ejn.12732. PubMed DOI

Grecova J., Bures Z., Popelar J., Suta D., Syka J. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons. Eur. J. Neurosci. 2009;29:1921–1930. doi: 10.1111/j.1460-9568.2009.06739.x. PubMed DOI

Bures Z., Pysanenko K., Lindovsky J., Syka J. Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat. Neural Plast. 2018;2018:5903720. doi: 10.1155/2018/5903720. PubMed DOI PMC

Ye C.Q., Poo M.M., Dan Y., Zhang X.H. Synaptic mechanisms of direction selectivity in primary auditory cortex. J. Neurosci. 2010;30:1861–1868. doi: 10.1523/JNEUROSCI.3088-09.2010. PubMed DOI PMC

Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates. 2nd ed. Academic Press; San Diego, CA, USA: 2001.

Bohuslavova R., Skvorova L., Sedmera D., Semenza G.L., Pavlinkova G. Increased susceptibility of HIF-1alpha heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J. Mol. Cell Cardiol. 2013;60:129–141. doi: 10.1016/j.yjmcc.2013.04.015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace