Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-06927S
Grantová Agentura České Republiky
86652036
Akademie Věd České Republiky
PubMed
33925933
PubMed Central
PMC8123449
DOI
10.3390/ijms22094507
PII: ijms22094507
Knihovny.cz E-zdroje
- Klíčová slova
- auditory system, inferior colliculus, inhibition, sound processing, transcription factor ISL1,
- MeSH
- colliculus inferior metabolismus fyziologie MeSH
- exprese genu genetika MeSH
- lidé MeSH
- mozek fyziologie MeSH
- myši transgenní MeSH
- myši MeSH
- neurony fyziologie MeSH
- promotorové oblasti (genetika) genetika MeSH
- proteiny s homeodoménou LIM genetika metabolismus MeSH
- sluch MeSH
- sluchová percepce genetika fyziologie MeSH
- sluchové kmenové evokované potenciály fyziologie MeSH
- sluchový práh fyziologie MeSH
- transkripční faktor PAX2 genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- insulin gene enhancer binding protein Isl-1 MeSH Prohlížeč
- PAX2 protein, human MeSH Prohlížeč
- Pax2 protein, mouse MeSH Prohlížeč
- proteiny s homeodoménou LIM MeSH
- transkripční faktor PAX2 MeSH
- transkripční faktory MeSH
The LIM homeodomain transcription factor ISL1 is essential for the different aspects of neuronal development and maintenance. In order to study the role of ISL1 in the auditory system, we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC). We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice, compared to wild type animals. The results further characterize abnormal sound processing in the IC of Tg mice and demonstrate that major changes occur on the side of inhibition.
Department of Technical Studies The College of Polytechnics 58601 Jihlava Czech Republic
Institute of Biotechnology CAS 25250 Vestec Czech Republic
Institute of Experimental Medicine CAS Vídenska 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Felix R.A., Gourevitch B., Portfors C.V. Subcortical pathways: Towards a better understanding of auditory disorders. Hear. Res. 2018;362:48–60. doi: 10.1016/j.heares.2018.01.008. PubMed DOI PMC
Ono M., Bishop D.C., Oliver D.L. Identified GABAergic and Glutamatergic Neurons in the Mouse Inferior Colliculus Share Similar Response Properties. J. Neurosci. 2017;37:8952–8964. doi: 10.1523/JNEUROSCI.0745-17.2017. PubMed DOI PMC
Syka J., Popelar J. Inferior colliculus in the rat: Neuronal responses to stimulation of the auditory cortex. Neurosci. Lett. 1984;51:235–240. doi: 10.1016/0304-3940(84)90557-3. PubMed DOI
Aitkin L.M., Kenyon C.E., Philpott P. The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J. Comp. Neurol. 1981;196:25–40. doi: 10.1002/cne.901960104. PubMed DOI
Merchan M., Aguilar L.A., Lopez-Poveda E.A., Malmierca M.S. The inferior colliculus of the rat: Quantitative immunocytochemical study of GABA and glycine. Neuroscience. 2005;136:907–925. doi: 10.1016/j.neuroscience.2004.12.030. PubMed DOI
Oliver D.L., Winer J.A., Beckius G.E., Saint Marie R.L. Morphology of GABAergic neurons in the inferior colliculus of the cat. J. Comp. Neurol. 1994;340:27–42. doi: 10.1002/cne.903400104. PubMed DOI
Ouda L., Profant O., Syka J. Age-related changes in the central auditory system. Cell Tissue Res. 2015;361:337–358. doi: 10.1007/s00441-014-2107-2. PubMed DOI
Ouda L., Syka J. Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front. Neural Circuits. 2012;6:68. doi: 10.3389/fncir.2012.00068. PubMed DOI PMC
Pal I., Paltati C.R.B., Kaur C., Saini S., Kumar P., Jacob T.G., Bhardwaj D.N., Roy T.S. Morphological and neurochemical changes in GABAergic neurons of the aging human inferior colliculus. Hear. Res. 2019;377:318–329. doi: 10.1016/j.heares.2019.02.005. PubMed DOI
Ono M., Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J. Exp. Neurosci. 2018;12 doi: 10.1177/1179069518818230. PubMed DOI PMC
Pfaff S.L., Mendelsohn M., Stewart C.L., Edlund T., Jessell T.M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996;84:309–320. doi: 10.1016/S0092-8674(00)80985-X. PubMed DOI
Sun Y., Dykes I.M., Liang X., Eng S.R., Evans S.M., Turner E.E. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 2008;11:1283–1293. doi: 10.1038/nn.2209. PubMed DOI PMC
Lin L., Bu L., Cai C.L., Zhang X., Evans S. Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev. Biol. 2006;295:756–763. doi: 10.1016/j.ydbio.2006.03.053. PubMed DOI
Cai C.L., Liang X., Shi Y., Chu P.H., Pfaff S.L., Chen J., Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 2003;5:877–889. doi: 10.1016/S1534-5807(03)00363-0. PubMed DOI PMC
Elshatory Y., Everhart D., Deng M., Xie X., Barlow R.B., Gan L. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J. Neurosci. 2007;27:12707–12720. doi: 10.1523/JNEUROSCI.3951-07.2007. PubMed DOI PMC
Whitney I.E., Raven M.A., Ciobanu D.C., Poche R.A., Ding Q., Elshatory Y., Gan L., Williams R.W., Reese B.E. Genetic modulation of horizontal cell number in the mouse retina. Proc. Natl. Acad. Sci. USA. 2011;108:9697–9702. doi: 10.1073/pnas.1103253108. PubMed DOI PMC
Hobert O., Westphal H. Functions of LIM-homeobox genes. Trends Genet. 2000;16:75–83. doi: 10.1016/S0168-9525(99)01883-1. PubMed DOI
Pfeffer P.L., Payer B., Reim G., di Magliano M.P., Busslinger M. The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development. 2002;129:307–318. doi: 10.1242/dev.129.2.307. PubMed DOI
Favor J., Sandulache R., Neuhauser-Klaus A., Pretsch W., Chatterjee B., Senft E., Wurst W., Blanquet V., Grimes P., Sporle R., et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. USA. 1996;93:13870–13875. doi: 10.1073/pnas.93.24.13870. PubMed DOI PMC
Bouchard M., de Caprona D., Busslinger M., Xu P., Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev. Biol. 2010;10:89. doi: 10.1186/1471-213X-10-89. PubMed DOI PMC
Chumak T., Bohuslavova R., Macova I., Dodd N., Buckiova D., Fritzsch B., Syka J., Pavlinkova G. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol. Neurobiol. 2016;53:2368–2383. doi: 10.1007/s12035-015-9215-1. PubMed DOI
Bohuslavova R., Dodd N., Macova I., Chumak T., Horak M., Syka J., Fritzsch B., Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol. Neurobiol. 2017;54:1352–1368. doi: 10.1007/s12035-016-9716-6. PubMed DOI PMC
Zhou X., Jen P.H., Seburn K.L., Frankel W.N., Zheng Q.Y. Auditory brainstem responses in 10 inbred strains of mice. Brain Res. 2006;1091:16–26. doi: 10.1016/j.brainres.2006.01.107. PubMed DOI PMC
Zheng Q.Y., Johnson K.R., Erway L.C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 1999;130:94–107. doi: 10.1016/S0378-5955(99)00003-9. PubMed DOI PMC
Melcher J.R., Guinan J.J., Jr., Knudson I.M., Kiang N.Y. Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes. Hear. Res. 1996;93:28–51. doi: 10.1016/0378-5955(95)00179-4. PubMed DOI
Land R., Burghard A., Kral A. The contribution of inferior colliculus activity to the auditory brainstem response (ABR) in mice. Hear. Res. 2016;341:109–118. doi: 10.1016/j.heares.2016.08.008. PubMed DOI
Tan X., Wang X., Yang W., Xiao Z. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hear. Res. 2008;235:90–104. doi: 10.1016/j.heares.2007.10.002. PubMed DOI
Chumak T., Ruttiger L., Lee S.C., Campanelli D., Zuccotti A., Singer W., Popelar J., Gutsche K., Geisler H.S., Schraven S.P., et al. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury. Mol. Neurobiol. 2016;53:5607–5627. doi: 10.1007/s12035-015-9474-x. PubMed DOI PMC
Kuo R.I., Wu G.Y.K. The Generation of Direction Selectivity in the Auditory System. Neuron. 2012;73:1016–1027. doi: 10.1016/j.neuron.2011.11.035. PubMed DOI
Pollak G.D., Xie R.L., Gittelman J.X., Andoni S., Li N. The dominance of inhibition in the inferior colliculus. Hear. Res. 2011;274:27–39. doi: 10.1016/j.heares.2010.05.010. PubMed DOI PMC
Idrizbegovic E., Bogdanovic N., Canlon B. Sound stimulation increases calcium-binding protein immunoreactivity in the inferior colliculus in mice. Neurosci. Lett. 1999;259:49–52. doi: 10.1016/S0304-3940(98)00911-2. PubMed DOI
Fredrich M., Reisch A., Illing R.B. Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp. Brain Res. 2009;195:241–260. doi: 10.1007/s00221-009-1776-7. PubMed DOI
Xie R., Meitzen J., Pollak G.D. Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. J. Neurophysiol. 2005;94:4019–4037. doi: 10.1152/jn.00688.2005. PubMed DOI
D’Angelo W.R., Sterbing S.J., Ostapoff E.M., Kuwada S. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus. J. Neurophysiol. 2005;93:3390–3400. doi: 10.1152/jn.00956.2004. PubMed DOI
Palmer A.R., Shackleton T.M., Sumner C.J., Zobay O., Rees A. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes. J. Physiol. 2013;591:4003–4025. doi: 10.1113/jphysiol.2013.255943. PubMed DOI PMC
Alkhatib A., Biebel U.W., Smolders J.W. Inhibitory and excitatory response areas of neurons in the central nucleus of the inferior colliculus in unanesthetized chinchillas. Exp. Brain Res. 2006;174:124–143. doi: 10.1007/s00221-006-0424-8. PubMed DOI
Egorova M., Ehret G., Vartanian I., Esser K.H. Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics. Exp. Brain Res. 2001;140:145–161. doi: 10.1007/s002210100786. PubMed DOI
Le Beau F.E., Rees A., Malmierca M.S. Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J. Neurophysiol. 1996;75:902–919. doi: 10.1152/jn.1996.75.2.902. PubMed DOI
LeBeau F.E., Malmierca M.S., Rees A. Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J. Neurosci. 2001;21:7303–7312. doi: 10.1523/JNEUROSCI.21-18-07303.2001. PubMed DOI PMC
Yang L., Pollak G.D., Resler C. GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J. Neurophysiol. 1992;68:1760–1774. doi: 10.1152/jn.1992.68.5.1760. PubMed DOI
Williams A.J., Fuzessery Z.M. Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat. J. Neurophysiol. 2011;106:2523–2535. doi: 10.1152/jn.00569.2011. PubMed DOI PMC
Park T.J., Pollak G.D. GABA shapes a topographic organization of response latency in the mustache bat’s inferior colliculus. J. Neurosci. 1993;13:5172–5187. doi: 10.1523/JNEUROSCI.13-12-05172.1993. PubMed DOI PMC
Palombi P.S., Caspary D.M. GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. J. Neurophysiol. 1996;75:2211–2219. doi: 10.1152/jn.1996.75.6.2211. PubMed DOI
Grimsley C.A., Sanchez J.T., Sivaramakrishnan S. Midbrain local circuits shape sound intensity codes. Front. Neural Circuit. 2013;7:174. doi: 10.3389/fncir.2013.00174. PubMed DOI PMC
Andressen C., Blumcke I., Celio M.R. Calcium-binding proteins: Selective markers of nerve cells. Cell Tissue Res. 1993;271:181–208. doi: 10.1007/BF00318606. PubMed DOI
Baimbridge K.G., Celio M.R., Rogers J.H. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15:303–308. doi: 10.1016/0166-2236(92)90081-I. PubMed DOI
Fuentes-Santamaria V., Alvarado J.C., Brunso-Bechtold J.K., Henkel C.K. Upregulation of calretinin immunostaining in the ferret inferior colliculus after cochlear ablation. J. Comp. Neurol. 2003;460:585–596. doi: 10.1002/cne.10676. PubMed DOI
Bures Z., Bartosova J., Lindovsky J., Chumak T., Popelar J., Syka J. Acoustical enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. Eur. J. Neurosci. 2014;40:3674–3683. doi: 10.1111/ejn.12732. PubMed DOI
Grecova J., Bures Z., Popelar J., Suta D., Syka J. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons. Eur. J. Neurosci. 2009;29:1921–1930. doi: 10.1111/j.1460-9568.2009.06739.x. PubMed DOI
Bures Z., Pysanenko K., Lindovsky J., Syka J. Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat. Neural Plast. 2018;2018:5903720. doi: 10.1155/2018/5903720. PubMed DOI PMC
Ye C.Q., Poo M.M., Dan Y., Zhang X.H. Synaptic mechanisms of direction selectivity in primary auditory cortex. J. Neurosci. 2010;30:1861–1868. doi: 10.1523/JNEUROSCI.3088-09.2010. PubMed DOI PMC
Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates. 2nd ed. Academic Press; San Diego, CA, USA: 2001.
Bohuslavova R., Skvorova L., Sedmera D., Semenza G.L., Pavlinkova G. Increased susceptibility of HIF-1alpha heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J. Mol. Cell Cardiol. 2013;60:129–141. doi: 10.1016/j.yjmcc.2013.04.015. PubMed DOI
Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain
ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization