Comparative Genome Analysis and Characterization of the Probiotic Properties of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Wild Boars in the Czech Republic

. 2024 Apr 23 ; () : . [epub] 20240423

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38652229

Grantová podpora
QK1910351, MZE-RO0523 Ministerstvo Zemědělství
QK1910351, MZE-RO0523 Ministerstvo Zemědělství
QK1910351, MZE-RO0523 Ministerstvo Zemědělství
QK1910351, MZE-RO0523 Ministerstvo Zemědělství
QK1910351, MZE-RO0523 Ministerstvo Zemědělství
QK1910351, MZE-RO0523 Ministerstvo Zemědělství

Odkazy

PubMed 38652229
DOI 10.1007/s12602-024-10259-7
PII: 10.1007/s12602-024-10259-7
Knihovny.cz E-zdroje

Probiotics are crucial components for maintaining a healthy gut microbiota in pigs, especially during the weaning period. Lactic acid bacteria (LAB) derived from the gastrointestinal tract of wild boars can serve as an abundant source of beneficial probiotic strains with suitable properties for use in pig husbandry. In this study, we analyzed and characterized 15 strains of Limosilactobacillus mucosae obtained from the gut contents of wild boars to assess their safety and suitability as probiotic candidates. The strains were compared using pan-genomic analysis with 49 L. mucosae strains obtained from the NCBI database. All isolated strains demonstrated their safety by showing an absence of transferrable antimicrobial resistance genes and hemolysin activity. Based on the presence of beneficial genes, five candidates with probiotic properties were selected and subjected to phenotypic profiling. These five selected isolates exhibited the ability to survive conditions mimicking passage through the host's digestive tract, such as low pH and the presence of bile salts. Furthermore, five selected strains demonstrated the presence of corresponding carbohydrate-active enzymes and the ability to utilize various carbohydrate substrates. These strains can enhance the digestibility of oligosaccharide or polysaccharide substrates found in food or feed, specifically resistant starch, α-galactosides, cellobiose, gentiobiose, and arabinoxylans. Based on the results obtained, the L. mucosae isolates tested in this study appear to be promising candidates for use as probiotics in pigs.

Zobrazit více v PubMed

Su W, Gong T, Jiang Z, Lu Z, Wang Y (2022) The role of probiotics in alleviating postweaning diarrhea in piglets from the perspective of intestinal barriers. Front Cell Infect Microbiol 12:1–12. https://doi.org/10.3389/fcimb.2022.883107 DOI

Hou C, Zeng X, Yang F, Liu H, Qiao S (2015) Study and use of the probiotic Lactobacillus reuteri in pigs: a review. J Anim Sci Biotechnol 6:1–8. https://doi.org/10.1186/s40104-015-0014-3 DOI

Dowarah R, Verma AK, Agarwal N (2017) The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Animal Nutrition 3:1–6. https://doi.org/10.1016/j.aninu.2016.11.002 PubMed DOI

Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ (2020) Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front Vet Sci 7:1–10. https://doi.org/10.3389/fvets.2020.00049 DOI

Bhogoju S, Khwatenge CN, Taylor-Bowden T, Akerele G, Kimathi BM, Donkor J et al (2021) Effects of Lactobacillus reuteri and Streptomyces coelicolor on growth performance of broiler chickens. Microorganisms 9:1–12. https://doi.org/10.3390/microorganisms9061341 DOI

Roe AL, Boyte ME, Elkins CA, Goldman VS, Heimbach J, Madden E et al (2022) Considerations for determining safety of probiotics: a USP perspective. Regul Toxicol Pharmacol 136:105266. https://doi.org/10.1016/j.yrtph.2022.105266 PubMed DOI PMC

Alayande KA, Aiyegoro OA, Ateba CN (2020) Probiotics in animal husbandry: applicability and associated risk factors. Sustainability (Switzerland) 12:1–12. https://doi.org/10.3390/su12031087 DOI

Jia Y, Yang B, Ross P, Stanton C, Zhang H, Zhao J et al (2020) Comparative genomics analysis of Lactobacillus mucosae from different niches. Genes (Basel) 11(1):95. https://doi.org/10.3390/genes11010095

Roos S, Karner F, Axelsson L, Jonsson H (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 50:251–258. https://doi.org/10.1099/00207713-50-1-251 PubMed DOI

Valeriano VD, Parungao-Balolong MM, Kang DK (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J Appl Microbiol 117:485–497. https://doi.org/10.1111/jam.12539 PubMed DOI

Lee JH, Valeriano VD, Shin YR, Chae JP, Kim GB, Ham JS et al (2012) Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J Bacteriol 194:4766. https://doi.org/10.1128/jb.01011-12 PubMed DOI PMC

Baranova MN, Kudzhaev AM, Mokrushina YA, Babenko VV, Kornienko MA, Malakhova MV et al (2022) Deep functional profiling of wild animal microbiomes reveals probiotic Bacillus pumilus strains with a common biosynthetic fingerprint. Int J Mol Sci 23(3):1168. https://doi.org/10.3390/ijms23031168

McCabe J, Bryant JL, Klews CC, Johnson M, Atchley AN, Cousins TW et al (2023) Phenotypic and draft genome sequence analyses of a Paenibacillus sp. isolated from the gastrointestinal tract of a North American gray wolf (Canis lupus). Appl Microbiol 3:1120–1129. https://doi.org/10.3390/applmicrobiol3040077 DOI

Keresztény T, Libisch B, Orbe SC, Nagy T, Kerényi Z, Kocsis R et al (2023) Isolation and characterization of lactic acid bacteria with probiotic attributes from different parts of the gastrointestinal tract of free-living wild boars in Hungary. Probiotics Antimicrob Proteins Jun 23. https://doi.org/10.1007/s12602-023-10113-2

Zhong Y, Fu D, Deng Z, Tang W, Mao J, Zhu T et al (2022) Lactic acid bacteria mixture isolated from wild pig alleviated the gut inflammation of mice challenged by Escherichia coli. Front Immunol 13:1–13. https://doi.org/10.3389/fimmu.2022.822754 DOI

Wei L, Zhou W, Zhu Z (2022) Comparison of changes in gut microbiota in wild boars and domestic pigs using 16S rRNA gene and metagenomics sequencing technologies. Animals 12(17):2270. https://doi.org/10.3390/ani12172270

Lagacé L, Pitre M, Jacqeus M, Roy D (2004) Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl Environ Microbiol 70:2052–2060. https://doi.org/10.1128/AEM.70.4.2052-2060.2004%0A PubMed DOI PMC

Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354 PubMed DOI PMC

Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:1–22. https://doi.org/10.1371/journal.pcbi.1005595 DOI

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) MetaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–34. http://www.genome.org/cgi/doi/ https://doi.org/10.1101/gr.213959.116

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-07641-9 DOI

Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153 PubMed DOI

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H et al (2019) EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085 PubMed DOI

Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18:366–368. https://doi.org/10.1038/s41592-021-01101-x PubMed DOI PMC

Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z et al (2018) DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95-101. https://doi.org/10.1093/nar/gky418 PubMed DOI PMC

Steinegger M, Söding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 9:2542. https://doi.org/10.1038/s41467-018-04964-5

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421 PubMed DOI PMC

Snipen L, Liland KH (2015) micropan: an R-package for microbial pan-genomics. BMC Bioinformatics 16:1–8. https://doi.org/10.1186/s12859-015-0517-0 DOI

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455. https://doi.org/10.1093/bioinformatics/btz305 PubMed DOI PMC

Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/nar/gkw1004 PubMed DOI

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261 PubMed DOI PMC

Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L et al (2014) ARG-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220. https://doi.org/10.1128/aac.01310-13%0A PubMed DOI PMC

Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C et al (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569. https://doi.org/10.1093/nar/gkz1010 PubMed DOI

Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I et al (2019) Validating the AMRFINder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63:1–19. https://doi.org/10.1128/aac.00483-19%0A DOI

Rychen G, Aquilina G, Azimonti G, Bampidis V, de Bastos ML, Bories G et al (2018) Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J 16:1–24. https://doi.org/10.2903/j.efsa.2018.5206 DOI

Ko HI, Jeong CH, Hong SW, Eun J-B, Kim T-W (2022) Optimizing conditions in the acid tolerance test for potential probiotics using response surface methodology. Microbiol Spectr 10:1–12. https://doi.org/10.1128/spectrum.01625-22%0A DOI

Tzortzis G, Baillon MLA, Gibson GR, Rastall RA (2004) Modulation of anti-pathogenic activity in canine-derived Lactobacillus species by carbohydrate growth substrate. J Appl Microbiol 96:552–559. https://doi.org/10.1111/j.1365-2672.2004.02172.x PubMed DOI

London LEE, Kumar AHS, Wall R, Casey PG, O’Sullivan O, Shanahan F et al (2014) Exopolysaccharide-producing probiotic lactobacilli reduce serum cholesterol and modify enteric microbiota in apoe-deficient mice. J Nutr 144:1956–1962. https://doi.org/10.3945/jn.114.191627 PubMed DOI

Valeriano VD, Bagon BB, Balolong MP, Kang DK (2016) Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin. J Microbiol 54:510–519. https://doi.org/10.1007/s12275-016-6168-7 PubMed DOI

Pavlova SI, Kilic AO, Kilic SS, So JS, Nader-Macias ME, Simoes JA et al (2002) Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92:451–459. https://doi.org/10.1046/j.1365-2672.2002.01547.x PubMed DOI

Repally A, Perumal V, Dasari A, Palanichamy E, Venkatesan A (2018) Isolation, identification of Lactobacillus mucosae AN1 and its antilisterial peptide purification and characterization. Probiotics Antimicrob Proteins 10:775–786. https://doi.org/10.1007/s12602-017-9341-3 PubMed DOI

de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF, Nero LA et al (2017) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicrob Proteins 9:235–245. https://doi.org/10.1007/s12602-016-9244-8 PubMed DOI

Rastogi S, Mittal V, Singh A (2020) In vitro evaluation of probiotic potential and safety assessment of Lactobacillus mucosae strains isolated from donkey’s lactation. Probiotics Antimicrob Proteins 12:1045–1056. https://doi.org/10.1007/s12602-019-09610-0 PubMed DOI

Bleckwedel J, Terán LC, Bonacina J, Saavedra L, Mozzi F, Raya RR (2014) Draft genome sequence of the mannitol-producing strain Lactobacillus mucosae CRL573. Genome Announc 2:4–5. https://doi.org/10.1128/genomea.01292-14%0A DOI

Fakhry S, Manzo N, D’Apuzzo E, Pietrini L, Sorrentini I, Ricca E et al (2009) Characterization of intestinal bacteria tightly bound to the human ileal epithelium. Res Microbiol 160:817–823. https://doi.org/10.1016/j.resmic.2009.09.009 PubMed DOI

London LEE, Price NPJ, Ryan P, Wang L, Auty MAE, Fitzgerald GF et al (2014) Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J Appl Microbiol 117:509–517. https://doi.org/10.1111/jam.12542 PubMed DOI

Fontana A, Falasconi I, Molinari P, Treu L, Basile A, Vezzi A et al (2019) Genomic comparison of Lactobacillus helveticus strains highlights probiotic potential. Front Microbiol 10:1–14. https://doi.org/10.3389/fmicb.2019.01380 DOI

Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594. https://doi.org/10.1016/j.gde.2005.09.006 PubMed DOI

Lozano C, Gonzalez-Barrio D, Camacho MC, Lima-Barbero JF, de la Puente J, Höfle U et al (2016) Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 72:813–820. https://doi.org/10.1007/s00248-015-0648-x PubMed DOI

Liu D, Direksin K, Panya M (2022) The probiotic properties of lactobacilli in organic pigs. Trop Anim Sci J 45:112–120. https://doi.org/10.5398/tasj.2022.45.1.112 DOI

Zou X, Weng M, Ji X, Guo R, Zheng W, Yao W (2017) Comparison of antibiotic resistance and copper tolerance of Enterococcus spp. and Lactobacillus spp. isolated from piglets before and after weaning. J Microbiol 55:703–710. https://doi.org/10.1007/s12275-017-6241-x PubMed DOI

Chang YC, Tsai CY, Lin CF, Wang YC, Wang IK, Chung TC (2011) Characterization of tetracycline resistance lactobacilli isolated from swine intestines at western area of Taiwan. Anaerobe 17:239–245. https://doi.org/10.1016/j.anaerobe.2011.08.001 PubMed DOI

Moravkova M, Kostovova I, Kavanova K, Pechar R, Stanek S, Brychta A et al (2023) Antibiotic susceptibility, resistance gene determinants and corresponding genomic regions in Lactobacillus amylovorus isolates derived from wild boars and domestic pigs. Microorganisms  11(1):103. https://doi.org/10.3390/microorganisms11010103

Dobson A, Cotter PD, Paul Ross R, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6. https://doi.org/10.1128/AEM.05576-11%0A PubMed DOI PMC

Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003%0A PubMed DOI PMC

Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria a review article. APCBEE Proc 2:50–56. https://doi.org/10.1016/j.apcbee.2012.06.010 DOI

Nishiyama K, Sugiyama M, Mukai T (2016) Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4:1–18. https://doi.org/10.3390/microorganisms4030034 DOI

Johnson BR, Klaenhammer TR (2016) AcmB is an S-layer-associated β-Nacetylglucosaminidase and functional autolysin in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 82:5687–5697. https://doi.org/10.1128/AEM.02025-16%0A PubMed DOI PMC

Piepenbrink KH, Sundberg EJ (2016) Motility and adhesion through type IV pili in gram-positive bacteria. Biochem Soc Trans 44(6):1659–1666. https://doi.org/10.1042/BST20160221 PubMed DOI PMC

Muschiol S, Erlendsson S, Aschtgen MS, Oliveira V, Schmieder P, De Lichtenberg C et al (2017) Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae. J Biol Chem 292:14134–14146. https://doi.org/10.1074/jbc.M117.787671 PubMed DOI PMC

Dobranowski PA, Stintzi A (2021) Resistant starch, microbiome, and precision modulation. Gut Microbes 13:1–21. https://doi.org/10.1080/19490976.2021.1926842 DOI

Vishnu C, Naveena BJ, Altaf M, Venkateshwar M, Reddy G (2006) Amylopullulanase—a novel enzyme of L. amylophilus GV6 in direct fermentation of starch to L(+) lactic acid. Enzyme Microb Technol 38:545–550. https://doi.org/10.1016/j.enzmictec.2005.07.010 DOI

Navarro DMDL, Abelilla JJ, Stein HH (2019) Structures and characteristics of carbohydrates in diets fed to pigs: A review. J Anim Sci Biotechnol 10:1–17. https://doi.org/10.1186/s40104-019-0345-6 DOI

Shen J, Zhang J, Zhao Y, Lin Z, Ji L, Ma X (2022) Tibetan pig-derived probiotic Lactobacillus amylovorus SLZX20-1 improved intestinal function via producing enzymes and regulating intestinal microflora. Front Nutr 9:1–15. https://doi.org/10.3389/fnut.2022.846991 DOI

Zannini E, Núñez ÁB, Sahin AW, Arendt EK (2022) Arabinoxylans as functional food ingredients: a review. Foods 11:1–28. https://doi.org/10.3390/foods11071026 DOI

Tiwari UP, Fleming SA, Rasheed MSA, Jha R, Dilger RN (2020) The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals. J Nutr Sci 9:1–9. https://doi.org/10.1017/jns.2020.14 DOI

Lee J, Yang W, Hostetler A, Schultz N, Suckow MA, Stewart KL et al (2016) Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol 16:1–13. https://doi.org/10.1186/s12866-016-0686-7 DOI

De Jesus MC, Urban AA, Marasigan ME, Foster DEB (2005) Acid and bile-salt stress of enteropathogenic Escherichia coli enhances adhesion to epithelial cells and alters glycolipid receptor binding specificity. J Infect Dis 192:1430–1440. https://doi.org/10.1086/462422 PubMed DOI

Faherty CS, Redman JC, Rasko DA, Barry EM, Nataro JP (2012) Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol 85(1):107–121. https://doi.org/10.1111/j.1365-2958.2012.08092.x PubMed DOI PMC

Kobierecka PA, Wyszyńska AK, Aleksandrzak-Piekarczyk T, Kuczkowski M, Tuzimek A, Piotrowska W et al (2017) In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. MicrobiologyOpen 6:1–15. https://doi.org/10.1002/mbo3.512 DOI

Khan M, Anjum AA, Nawaz M, Awan AR (2020) In vitro characterization of probiotic properties and anti-campylobacter activity of Lactobacillus spp. isolated from poultry, fermented foods and human faeces. J Anim Plant Sci 30:336–44. https://doi.org/10.36899/JAPS.2020.2.0053 DOI

Ting YS, Saad WZ, Chin SC, Wan HY, Livestock S, Headquarters M et al (2016) Characterization of conjugated linoleic acid-producing lactic acid bacteria as potential probiotic for chicken. Malays J Microbiol 12:15–23. https://doi.org/10.21161/mjm.67214 DOI

McAuliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929. https://doi.org/10.1128/AEM.71.8.4925-4929.2005%0A PubMed DOI PMC

Grill JP, Cayuela C, Antoine JM, Schneider F (2000) Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. J Appl Microbiol 89:553–563. https://doi.org/10.1046/j.1365-2672.2000.01147.x PubMed DOI

Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ et al (2021) Invited review: Characterization of new probiotics from dairy and nondairy products—insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 104:8363–8379. https://doi.org/10.3168/jds.2021-20398 PubMed DOI

O'Flaherty S, Briner Crawley A, Theriot CM, Barrangou R (2018) The Lactobacillus bile salt hydrolase repertoire reveals niche-specific adaptation. mSphere 3(3):e00140–18. https://doi.org/10.1128/msphere.00140-18

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...