Carbohydrate utilization
Dotaz
Zobrazit nápovědu
Anoxia tolerance can be evaluated not only in terms of growth or survival of plant organs during oxygen deprivation, but also in relation to carbohydrate utilization in the context of a well-modulated fermentative metabolism. Rice (Oryza spp.) is unique among cereals, in that it has the distinctive ability to germinate under complete anaerobiosis by using the starchy reserves in its seeds to fuel the anaerobic metabolism. The aim of the present study was to evaluate the ability of germinating rice seedlings to survive a long-term oxygen deficiency [40 days after sowing (DAS)] and the effects on sugar metabolism, focusing on starch degradation as well as soluble sugars transport and storage under anoxia. No significant decline in vitality occurred until 30 DAS though no recovery was detected following longer anoxic treatments. Growth arrest was observed following anoxic treatments longer that 20 DAS, in concomitance with considerably lower ethanol production. Amylolytic activity in embryos and endosperms had similar responses to anoxia, reaching maximum content 30 days after the onset of stress, following which the levels declined for the remainder of the experiment. Under anoxia, average amylolytic activity was twofold higher in embryos than endosperms. Efficient starch degradation was observed in rice under anoxia at the onset of the treatment but it decreased over time and did not lead to a complete depletion. Our analysis of α-amylase activity did not support the hypothesis that starch degradation plays a critical role in explaining differences in vitality and coleoptile growth under prolonged oxygen deprivation.
- MeSH
- alfa-amylasy metabolismus MeSH
- anaerobióza MeSH
- endosperm metabolismus MeSH
- ethanol metabolismus MeSH
- klíčení * MeSH
- kotyledon metabolismus MeSH
- metabolismus sacharidů * MeSH
- rozpustnost MeSH
- rýže (rod) embryologie metabolismus MeSH
- škrob metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- Escherichia coli * MeSH
- laktosa * MeSH
- metabolismus sacharidů * MeSH
- výzkum * MeSH
- Publikační typ
- časopisecké články MeSH
Some strains of the genus Enterococcus are effective probiotic bacteria if they meet safety and probiotic criteria. In our study, 17 canine enterococci previously selected from a group of 160 isolates based on safety criteria were screened for some functional properties relevant to their use as probiotics. The results of antimicrobial resistance testing showed sensitivity of eleven strains to EFSA recommended antimicrobials. In contrast, the most frequent resistance was observed for cefotaxim (15/17) and oxacillin (13/17). PCR detection of resistance genes (vanA, vanB, vanC, tetM, tetL, ermB, and mefA) revealed the presence of mefA gene in five Enterococcus faecium strains and vanA gene in one strain. The production of enzymes commonly associated with intestinal diseases was in general rare (β-glucosidase 2/17, α-chymotrypsin 1/17, N-acetyl-β-glucosaminidase 0/17, and β-glucuronidase 0/17). The measurement of strain survival rate (%) under the conditions simulating gastric (pH 2.5) and bile juices (0.3% bile) showed considerable differences between strains (< 0.01 to 4.7% after 90 min for gastric juices, 48.0 to 254.0% after 180 min for bile). The concentration of produced L-lactic acid ranged between 83.1 to 119.3 mmol/L after 48 h cultivation depending on the strain. All strains fermented 16 out of 49 different carbohydrates (range from 17 to 23/49). Antimicrobial activity was recorded for two strains against some species of Listeria sp. and Enterococcus sp. Finally, two E. faecium candidates (IK25 and D7) were selected for testing in dogs, and hereafter they could possibly extend the currently limited range of beneficial bacteria of canine origin used as a dietary supplement for dogs.
- MeSH
- antibakteriální látky farmakologie normy MeSH
- Bacteria účinky léků MeSH
- bakteriální geny MeSH
- bakteriální léková rezistence genetika MeSH
- bakteriociny genetika MeSH
- Enterococcus účinky léků genetika metabolismus fyziologie MeSH
- kyselina mléčná biosyntéza MeSH
- metabolismus sacharidů MeSH
- mikrobiální testy citlivosti MeSH
- probiotika farmakologie MeSH
- psi MeSH
- žaludeční kyselina MeSH
- žluč MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.
- MeSH
- biopaliva MeSH
- půda chemie MeSH
- spalování odpadů metody MeSH
- vysoká teplota MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The guidelines for nutritional support in critically ill adult patients differ in various aspects. The optimal amount of energy and nutritional substrates supplied is important for reducing morbidity and mortality, but unfortunately this is not well known, because the topic is complex and every patient is individual. The aim of this review was to gather recent pertinent information concerning the nutritional support of critically ill patients in the intensive care unit (ICU) with respect to the energy, protein, carbohydrate, and lipid intakes and the effect of their specific utilization on morbidity and mortality. Enteral nutrition (EN) is generally recommended over parenteral nutrition (PN) and is beneficial when administered within 24-48 h after ICU admission. In contrast, early PN does not provide substantial advantages in terms of morbidity and mortality, and the time when it is safe and beneficial remains unclear. The most advantageous recommendation seems to be administration of a hypocaloric (<20 kcal · kg-1 · d-1), high-protein diet (amino acids at doses of ≥2 g · kg-1 · d-1), at least during the first week of critical illness. Another important factor for reducing morbidity is the maintenance of blood glucose concentrations at 120-150 mg/dL, which is accomplished with the use of insulin and lower doses of glucose of 1-2 g · kg-1 · d-1, because this prevents the risk of hypoglycemia and is associated with a better prognosis according to recent studies. A fat emulsion is used as a source of required calories because of insulin resistance in the majority of patients. In addition, lipid oxidation in these patients is ∼25% higher than in healthy subjects.
- MeSH
- dietní proteiny aplikace a dávkování MeSH
- dietní sacharidy aplikace a dávkování MeSH
- dietní tuky aplikace a dávkování MeSH
- dospělí MeSH
- energetický metabolismus MeSH
- energetický příjem * MeSH
- enterální výživa MeSH
- inzulin krev MeSH
- jednotky intenzivní péče MeSH
- krevní glukóza metabolismus MeSH
- kritický stav epidemiologie terapie MeSH
- lidé MeSH
- metaanalýza jako téma MeSH
- morbidita MeSH
- mortalita MeSH
- nutriční nároky MeSH
- parenterální výživa MeSH
- pozorovací studie jako téma MeSH
- randomizované kontrolované studie jako téma MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH