Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat

. 2018 ; 2018 () : 5903720. [epub] 20180530

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30002673

It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.

Zobrazit více v PubMed

Rybalko N., Syka J. Susceptibility to noise exposure during postnatal development in rats. Hearing Research. 2001;155(1-2):32–40. doi: 10.1016/S0378-5955(01)00245-3. PubMed DOI

Insanally M. N., Kover H., Kim H., Bao S. Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience. 2009;29(17):5456–5462. doi: 10.1523/JNEUROSCI.5311-08.2009. PubMed DOI PMC

de Villers-Sidani E., Chang E. F., Bao S., Merzenich M. M. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience. 2007;27(1):180–189. doi: 10.1523/JNEUROSCI.3227-06.2007. PubMed DOI PMC

Zhang L. I., Bao S., Merzenich M. M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience. 2001;4(11):1123–1130. doi: 10.1038/nn745. PubMed DOI

Zhou X., Nagarajan N., Mossop B. J., Merzenich M. M. Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience. 2008;154(1):390–396. doi: 10.1016/j.neuroscience.2008.01.026. PubMed DOI PMC

Bureš Z., Bartošová J., Lindovský J., Chumak T., Popelář J., Syka J. Acoustical enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. European Journal of Neuroscience. 2014;40(11):3674–3683. doi: 10.1111/ejn.12732. PubMed DOI

Chang E., Merzenich M. Environmental noise retards auditory cortical development. Science. 2003;300(5618):498–502. doi: 10.1126/science.1082163. PubMed DOI

Bureš Z., Grécová J., Popelář J., Syka J. Noise exposure during early development impairs the processing of sound intensity in adult rats. European Journal of Neuroscience. 2010;32(1):155–164. doi: 10.1111/j.1460-9568.2010.07280.x. PubMed DOI

Bureš Z., Popelář J., Syka J. The effect of noise exposure during the developmental period on the function of the auditory system. Hearing Research. 2017;352:1–11. doi: 10.1016/j.heares.2016.03.008. PubMed DOI

Grécová J., Bureš Z., Popelář J., Šuta D., Syka J. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons. European Journal of Neuroscience. 2009;29(9):1921–1930. doi: 10.1111/j.1460-9568.2009.06739.x. PubMed DOI

Engineer N. D., Percaccio C. R., Pandya P. K., Moucha R., Rathbun D. L., Kilgard M. P. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. Journal of Neurophysiology. 2004;92(1):73–82. doi: 10.1152/jn.00059.2004. PubMed DOI

Oliver D. L., Izquierdo M. A., Malmierca M. S. Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience. 2011;184:75–87. doi: 10.1016/j.neuroscience.2011.04.001. PubMed DOI PMC

Miyakawa A., Gibboni R., Bao S. Repeated exposure to a tone transiently alters spectral tuning bandwidth of neurons in the central nucleus of inferior colliculus in juvenile rats. Neuroscience. 2013;230:114–120. doi: 10.1016/j.neuroscience.2012.10.068. PubMed DOI PMC

Polley D., Steinberg E., Merzenich M. Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience. 2006;26(18):4970–4982. doi: 10.1523/JNEUROSCI.3771-05.2006. PubMed DOI PMC

Percaccio C. R., Pruette A. L., Mistry S. T., Chen Y. H., Kilgard M. P. Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Research. 2007;1174:76–91. doi: 10.1016/j.brainres.2007.07.062. PubMed DOI

Pysanenko K., Bureš Z., Lindovský J., Syka J. The effect of complex acoustic environment during early development on the responses of auditory cortex neurons in rats. Neuroscience. 2018;371:221–228. doi: 10.1016/j.neuroscience.2017.11.049. PubMed DOI

Zhou X., Merzenich M. M. Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proceedings of the National Academy of Sciences. 2008;105(11):4423–4428. doi: 10.1073/pnas.0800009105. PubMed DOI PMC

van Rossum M. C. W. A novel spike distance. Neural Computation. 2001;13(4):751–763. doi: 10.1162/089976601300014321. PubMed DOI

Cheng Y., Jia G., Zhang Y., et al. Positive impacts of early auditory training on cortical processing at an older age. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(24):6364–6369. doi: 10.1073/pnas.1707086114. PubMed DOI PMC

Green D. M., Swets J. A. Signal Detection Theory and Psychophysics. New York: Wiley; 1966.

Steven Colburn H., Carney L. H., Heinz M. G. Quantifying the information in auditory-nerve responses for level discrimination. Journal of the Association for Research in Otolaryngology. 2003;4(3):294–311. doi: 10.1007/s10162-002-1090-6. PubMed DOI PMC

Ouda L., Burianová J., Balogová Z., Lu H. P., Syka J. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure. Brain Structure and Function. 2016;221(1):617–629. doi: 10.1007/s00429-014-0929-z. PubMed DOI

Kandler K., Gillespie D. C. Developmental refinement of inhibitory sound-localization circuits. Trends in Neurosciences. 2005;28(6):290–296. doi: 10.1016/j.tins.2005.04.007. PubMed DOI PMC

Sanes D. H., Takács C. Activity-dependent refinement of inhibitory connections. European Journal of Neuroscience. 1993;5(6):570–574. doi: 10.1111/j.1460-9568.1993.tb00522.x. PubMed DOI

Lu H. P., Syka J., Chiu T. W., Poon P. W. F. Prolonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem. Hearing Research. 2014;314:42–50. doi: 10.1016/j.heares.2014.05.005. PubMed DOI

Chang E. F., Bao S., Imaizumi K., Schreiner C. E., Merzenich M. M. Development of spectral and temporal response selectivity in the auditory cortex. Proceedings of the National Academy of Sciences. 2005;102(45):16460–16465. doi: 10.1073/pnas.0508239102. PubMed DOI PMC

Jiang C., Xu X., Yu L., Xu J., Zhang J. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure. European Journal of Neuroscience. 2015;42(5):2144–2154. doi: 10.1111/ejn.12975. PubMed DOI

de Villers-Sidani E., Simpson K. L., Lu Y.-F., Lin R. C. S., Merzenich M. M. Manipulating critical period closure across different sectors of the primary auditory cortex. Nature Neuroscience. 2008;11(8):957–965. doi: 10.1038/nn.2144. PubMed DOI PMC

Dorrn A. L., Yuan K., Barker A. J., Schreiner C. E., Froemke R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature. 2010;465(7300):932–936. doi: 10.1038/nature09119. PubMed DOI PMC

Percaccio C. R., Engineer N. D., Pruette A. L., et al. Environmental enrichment increases paired-pulse depression in rat auditory cortex. Journal of Neurophysiology. 2005;94(5):3590–3600. doi: 10.1152/jn.00433.2005. PubMed DOI

Bose M., Muñoz-llancao P., Roychowdhury S., et al. Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse. 2010;64(2):97–110. doi: 10.1002/syn.20710. PubMed DOI PMC

Xu J., Yu L., Cai R., Zhang J., Sun X. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex. Behavioural Brain Research. 2009;196(1):49–54. doi: 10.1016/j.bbr.2008.07.018. PubMed DOI

García-Estrada J., Ruvalcaba-Delgadillo Y., Luquín S., et al. Early-life exposure to noise reduces mPFC astrocyte numbers and T-maze alternation/discrimination task performance in adult male rats. Noise & Health. 2015;17(77):216–226. doi: 10.4103/1463-1741.160703. PubMed DOI PMC

Nichols J. A., Jakkamsetti V. P., Salgado H., Dinh L., Kilgard M. P., Atzori M. Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat. Neuroscience. 2007;145(3):832–840. doi: 10.1016/j.neuroscience.2006.12.061. PubMed DOI PMC

Rybalko N., Bureš Z., Burianová J., Popelář J., Grécová J., Syka J. Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiology & Behavior. 2011;102(5):453–458. doi: 10.1016/j.physbeh.2010.12.010. PubMed DOI

Rybalko N., Chumak T., Bureš Z., Popelář J., Šuta D., Syka J. Development of the acoustic startle response in rats and its change after early acoustic trauma. Behavioural Brain Research. 2015;286:212–221. doi: 10.1016/j.bbr.2015.02.046. PubMed DOI

Šuta D., Rybalko N., Shen D.-W., Popelář J., Poon P. W. F., Syka J. Frequency discrimination in rats exposed to noise as juveniles. Physiology & Behavior. 2015;144:60–65. doi: 10.1016/j.physbeh.2015.03.005. PubMed DOI

Insanally M. N., Albanna B. F., Bao S. Pulsed noise experience disrupts complex sound representations. Journal of Neurophysiology. 2010;103(5):2611–2617. doi: 10.1152/jn.00872.2009. PubMed DOI PMC

Polley D. B., Thompson J. H., Guo W. Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nature Communications. 2013;4 doi: 10.1038/ncomms3547. PubMed DOI PMC

Fritz J., Shamma S., Elhilali M., Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience. 2003;6(11):1216–1223. doi: 10.1038/nn1141. PubMed DOI

Silver R. A. Neuronal arithmetic. Nature Reviews Neuroscience. 2010;11(7):474–489. doi: 10.1038/nrn2864. PubMed DOI PMC

Fastl H., Zwicker E. Psychoacoustics: Facts and Models. Berlin Heidelberg: Springer; 2007.

Bureš Z., Maršálek P. On the precision of neural computation with interaural level differences in the lateral superior olive. Brain Research. 2013;1536:16–26. doi: 10.1016/j.brainres.2013.05.008. PubMed DOI

Cariani P. Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plasticity. 1999;6(4):147–172. doi: 10.1155/NP.1999.147. PubMed DOI PMC

Tiesinga P., Fellous J.-M., Sejnowski T. J. Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience. 2008;9(2):97–107. doi: 10.1038/nrn2315. PubMed DOI PMC

Bureš Z. The stochastic properties of input spike trains control neuronal arithmetic. Biological Cybernetics. 2012;106(2):111–122. doi: 10.1007/s00422-012-0483-9. PubMed DOI

Takesian A. E., Kotak V. C., Sanes D. H. Age-dependent effect of hearing loss on cortical inhibitory synapse function. Journal of Neurophysiology. 2012;107(3):937–947. doi: 10.1152/jn.00515.2011. PubMed DOI PMC

Tao C., Zhang G., Zhou C., et al. Synaptic basis for the generation of response variation in auditory cortex. Scientific Reports. 2016;6(1, article 31024) doi: 10.1038/srep31024. PubMed DOI PMC

Rodriguez-Molina V. M., Aertsen A., Heck D. H. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing. PLoS One. 2007;2(3, article e319) doi: 10.1371/journal.pone.0000319. PubMed DOI PMC

Zhou M., Li Y.-T., Yuan W., Tao H. W., Zhang L. I. Synaptic mechanisms for generating temporal diversity of auditory representation in the dorsal cochlear nucleus. Journal of Neurophysiology. 2015;113(5):1358–1368. doi: 10.1152/jn.00573.2014. PubMed DOI PMC

Yokota R., Aihara K., Kanzaki R., Takahashi H. Learning-stage-dependent plasticity of temporal coherence in the auditory cortex of rats. Brain Topography. 2015;28(3):401–410. doi: 10.1007/s10548-014-0359-5. PubMed DOI

Jaaskelainen I. P., Ahveninen J. Auditory-cortex short-term plasticity induced by selective attention. Neural Plasticity. 2014;2014:11. doi: 10.1155/2014/216731.216731 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...