Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30002673
PubMed Central
PMC5998158
DOI
10.1155/2018/5903720
Knihovny.cz E-zdroje
- MeSH
- akční potenciály * MeSH
- akustická stimulace * MeSH
- neurony fyziologie MeSH
- potkani Long-Evans MeSH
- sluchová percepce fyziologie MeSH
- sluchové korové centrum fyziologie MeSH
- životní prostředí MeSH
- zvířata MeSH
- zvuk MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.
Zobrazit více v PubMed
Rybalko N., Syka J. Susceptibility to noise exposure during postnatal development in rats. Hearing Research. 2001;155(1-2):32–40. doi: 10.1016/S0378-5955(01)00245-3. PubMed DOI
Insanally M. N., Kover H., Kim H., Bao S. Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience. 2009;29(17):5456–5462. doi: 10.1523/JNEUROSCI.5311-08.2009. PubMed DOI PMC
de Villers-Sidani E., Chang E. F., Bao S., Merzenich M. M. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience. 2007;27(1):180–189. doi: 10.1523/JNEUROSCI.3227-06.2007. PubMed DOI PMC
Zhang L. I., Bao S., Merzenich M. M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience. 2001;4(11):1123–1130. doi: 10.1038/nn745. PubMed DOI
Zhou X., Nagarajan N., Mossop B. J., Merzenich M. M. Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience. 2008;154(1):390–396. doi: 10.1016/j.neuroscience.2008.01.026. PubMed DOI PMC
Bureš Z., Bartošová J., Lindovský J., Chumak T., Popelář J., Syka J. Acoustical enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. European Journal of Neuroscience. 2014;40(11):3674–3683. doi: 10.1111/ejn.12732. PubMed DOI
Chang E., Merzenich M. Environmental noise retards auditory cortical development. Science. 2003;300(5618):498–502. doi: 10.1126/science.1082163. PubMed DOI
Bureš Z., Grécová J., Popelář J., Syka J. Noise exposure during early development impairs the processing of sound intensity in adult rats. European Journal of Neuroscience. 2010;32(1):155–164. doi: 10.1111/j.1460-9568.2010.07280.x. PubMed DOI
Bureš Z., Popelář J., Syka J. The effect of noise exposure during the developmental period on the function of the auditory system. Hearing Research. 2017;352:1–11. doi: 10.1016/j.heares.2016.03.008. PubMed DOI
Grécová J., Bureš Z., Popelář J., Šuta D., Syka J. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons. European Journal of Neuroscience. 2009;29(9):1921–1930. doi: 10.1111/j.1460-9568.2009.06739.x. PubMed DOI
Engineer N. D., Percaccio C. R., Pandya P. K., Moucha R., Rathbun D. L., Kilgard M. P. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. Journal of Neurophysiology. 2004;92(1):73–82. doi: 10.1152/jn.00059.2004. PubMed DOI
Oliver D. L., Izquierdo M. A., Malmierca M. S. Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience. 2011;184:75–87. doi: 10.1016/j.neuroscience.2011.04.001. PubMed DOI PMC
Miyakawa A., Gibboni R., Bao S. Repeated exposure to a tone transiently alters spectral tuning bandwidth of neurons in the central nucleus of inferior colliculus in juvenile rats. Neuroscience. 2013;230:114–120. doi: 10.1016/j.neuroscience.2012.10.068. PubMed DOI PMC
Polley D., Steinberg E., Merzenich M. Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience. 2006;26(18):4970–4982. doi: 10.1523/JNEUROSCI.3771-05.2006. PubMed DOI PMC
Percaccio C. R., Pruette A. L., Mistry S. T., Chen Y. H., Kilgard M. P. Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Research. 2007;1174:76–91. doi: 10.1016/j.brainres.2007.07.062. PubMed DOI
Pysanenko K., Bureš Z., Lindovský J., Syka J. The effect of complex acoustic environment during early development on the responses of auditory cortex neurons in rats. Neuroscience. 2018;371:221–228. doi: 10.1016/j.neuroscience.2017.11.049. PubMed DOI
Zhou X., Merzenich M. M. Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proceedings of the National Academy of Sciences. 2008;105(11):4423–4428. doi: 10.1073/pnas.0800009105. PubMed DOI PMC
van Rossum M. C. W. A novel spike distance. Neural Computation. 2001;13(4):751–763. doi: 10.1162/089976601300014321. PubMed DOI
Cheng Y., Jia G., Zhang Y., et al. Positive impacts of early auditory training on cortical processing at an older age. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(24):6364–6369. doi: 10.1073/pnas.1707086114. PubMed DOI PMC
Green D. M., Swets J. A. Signal Detection Theory and Psychophysics. New York: Wiley; 1966.
Steven Colburn H., Carney L. H., Heinz M. G. Quantifying the information in auditory-nerve responses for level discrimination. Journal of the Association for Research in Otolaryngology. 2003;4(3):294–311. doi: 10.1007/s10162-002-1090-6. PubMed DOI PMC
Ouda L., Burianová J., Balogová Z., Lu H. P., Syka J. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure. Brain Structure and Function. 2016;221(1):617–629. doi: 10.1007/s00429-014-0929-z. PubMed DOI
Kandler K., Gillespie D. C. Developmental refinement of inhibitory sound-localization circuits. Trends in Neurosciences. 2005;28(6):290–296. doi: 10.1016/j.tins.2005.04.007. PubMed DOI PMC
Sanes D. H., Takács C. Activity-dependent refinement of inhibitory connections. European Journal of Neuroscience. 1993;5(6):570–574. doi: 10.1111/j.1460-9568.1993.tb00522.x. PubMed DOI
Lu H. P., Syka J., Chiu T. W., Poon P. W. F. Prolonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem. Hearing Research. 2014;314:42–50. doi: 10.1016/j.heares.2014.05.005. PubMed DOI
Chang E. F., Bao S., Imaizumi K., Schreiner C. E., Merzenich M. M. Development of spectral and temporal response selectivity in the auditory cortex. Proceedings of the National Academy of Sciences. 2005;102(45):16460–16465. doi: 10.1073/pnas.0508239102. PubMed DOI PMC
Jiang C., Xu X., Yu L., Xu J., Zhang J. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure. European Journal of Neuroscience. 2015;42(5):2144–2154. doi: 10.1111/ejn.12975. PubMed DOI
de Villers-Sidani E., Simpson K. L., Lu Y.-F., Lin R. C. S., Merzenich M. M. Manipulating critical period closure across different sectors of the primary auditory cortex. Nature Neuroscience. 2008;11(8):957–965. doi: 10.1038/nn.2144. PubMed DOI PMC
Dorrn A. L., Yuan K., Barker A. J., Schreiner C. E., Froemke R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature. 2010;465(7300):932–936. doi: 10.1038/nature09119. PubMed DOI PMC
Percaccio C. R., Engineer N. D., Pruette A. L., et al. Environmental enrichment increases paired-pulse depression in rat auditory cortex. Journal of Neurophysiology. 2005;94(5):3590–3600. doi: 10.1152/jn.00433.2005. PubMed DOI
Bose M., Muñoz-llancao P., Roychowdhury S., et al. Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse. 2010;64(2):97–110. doi: 10.1002/syn.20710. PubMed DOI PMC
Xu J., Yu L., Cai R., Zhang J., Sun X. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex. Behavioural Brain Research. 2009;196(1):49–54. doi: 10.1016/j.bbr.2008.07.018. PubMed DOI
García-Estrada J., Ruvalcaba-Delgadillo Y., Luquín S., et al. Early-life exposure to noise reduces mPFC astrocyte numbers and T-maze alternation/discrimination task performance in adult male rats. Noise & Health. 2015;17(77):216–226. doi: 10.4103/1463-1741.160703. PubMed DOI PMC
Nichols J. A., Jakkamsetti V. P., Salgado H., Dinh L., Kilgard M. P., Atzori M. Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat. Neuroscience. 2007;145(3):832–840. doi: 10.1016/j.neuroscience.2006.12.061. PubMed DOI PMC
Rybalko N., Bureš Z., Burianová J., Popelář J., Grécová J., Syka J. Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiology & Behavior. 2011;102(5):453–458. doi: 10.1016/j.physbeh.2010.12.010. PubMed DOI
Rybalko N., Chumak T., Bureš Z., Popelář J., Šuta D., Syka J. Development of the acoustic startle response in rats and its change after early acoustic trauma. Behavioural Brain Research. 2015;286:212–221. doi: 10.1016/j.bbr.2015.02.046. PubMed DOI
Šuta D., Rybalko N., Shen D.-W., Popelář J., Poon P. W. F., Syka J. Frequency discrimination in rats exposed to noise as juveniles. Physiology & Behavior. 2015;144:60–65. doi: 10.1016/j.physbeh.2015.03.005. PubMed DOI
Insanally M. N., Albanna B. F., Bao S. Pulsed noise experience disrupts complex sound representations. Journal of Neurophysiology. 2010;103(5):2611–2617. doi: 10.1152/jn.00872.2009. PubMed DOI PMC
Polley D. B., Thompson J. H., Guo W. Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nature Communications. 2013;4 doi: 10.1038/ncomms3547. PubMed DOI PMC
Fritz J., Shamma S., Elhilali M., Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience. 2003;6(11):1216–1223. doi: 10.1038/nn1141. PubMed DOI
Silver R. A. Neuronal arithmetic. Nature Reviews Neuroscience. 2010;11(7):474–489. doi: 10.1038/nrn2864. PubMed DOI PMC
Fastl H., Zwicker E. Psychoacoustics: Facts and Models. Berlin Heidelberg: Springer; 2007.
Bureš Z., Maršálek P. On the precision of neural computation with interaural level differences in the lateral superior olive. Brain Research. 2013;1536:16–26. doi: 10.1016/j.brainres.2013.05.008. PubMed DOI
Cariani P. Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plasticity. 1999;6(4):147–172. doi: 10.1155/NP.1999.147. PubMed DOI PMC
Tiesinga P., Fellous J.-M., Sejnowski T. J. Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience. 2008;9(2):97–107. doi: 10.1038/nrn2315. PubMed DOI PMC
Bureš Z. The stochastic properties of input spike trains control neuronal arithmetic. Biological Cybernetics. 2012;106(2):111–122. doi: 10.1007/s00422-012-0483-9. PubMed DOI
Takesian A. E., Kotak V. C., Sanes D. H. Age-dependent effect of hearing loss on cortical inhibitory synapse function. Journal of Neurophysiology. 2012;107(3):937–947. doi: 10.1152/jn.00515.2011. PubMed DOI PMC
Tao C., Zhang G., Zhou C., et al. Synaptic basis for the generation of response variation in auditory cortex. Scientific Reports. 2016;6(1, article 31024) doi: 10.1038/srep31024. PubMed DOI PMC
Rodriguez-Molina V. M., Aertsen A., Heck D. H. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing. PLoS One. 2007;2(3, article e319) doi: 10.1371/journal.pone.0000319. PubMed DOI PMC
Zhou M., Li Y.-T., Yuan W., Tao H. W., Zhang L. I. Synaptic mechanisms for generating temporal diversity of auditory representation in the dorsal cochlear nucleus. Journal of Neurophysiology. 2015;113(5):1358–1368. doi: 10.1152/jn.00573.2014. PubMed DOI PMC
Yokota R., Aihara K., Kanzaki R., Takahashi H. Learning-stage-dependent plasticity of temporal coherence in the auditory cortex of rats. Brain Topography. 2015;28(3):401–410. doi: 10.1007/s10548-014-0359-5. PubMed DOI
Jaaskelainen I. P., Ahveninen J. Auditory-cortex short-term plasticity induced by selective attention. Neural Plasticity. 2014;2014:11. doi: 10.1155/2014/216731.216731 PubMed DOI PMC