Variability of Human rDNA
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
Progres Q28
Univerzita Karlova v Praze
19-21715S
Grantová Agentura České Republiky
PubMed
33498263
PubMed Central
PMC7909238
DOI
10.3390/cells10020196
PII: cells10020196
Knihovny.cz E-zdroje
- Klíčová slova
- copy number, human rDNA, mutations, sequence variability,
- MeSH
- genetická variace * MeSH
- genetické lokusy MeSH
- lidé MeSH
- promotorové oblasti (genetika) genetika MeSH
- ribozomální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ribozomální DNA MeSH
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Zobrazit více v PubMed
Conconi A., Widmer R.M., Koller T., Sogo J.M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell. 1989;57:753–761. doi: 10.1016/0092-8674(89)90790-3. PubMed DOI
Gonzalez I.L., Chambers C., Gorski J.L., Stambolian D., Schmickel R.D., Sylvester J.E. Sequence and Structure Correlation of Human Ribosomal Transcribed Spacers. J. Mol. Biol. 1990;212:27–35. doi: 10.1016/0022-2836(90)90302-3. PubMed DOI
Gonzalez I.L., Wu S., Li W.M., Kuo B.A., Sylvester J.E. Human Ribosomal-Rna Intergenic Spacer Sequence. Nucleic Acids Res. 1992;20:5846. doi: 10.1093/nar/20.21.5846. PubMed DOI PMC
Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. doi: 10.1073/pnas.69.11.3394. PubMed DOI PMC
Long E.O., Dawid I.B. Repeated Genes in Eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. PubMed DOI
Santoro R. Analysis of chromatin composition of repetitive sequences: The ChIP-Chop assay. Methods Mol. Biol. 2014;1094:319–328. PubMed
Smirnov E., Borkovec J., Kováčik L., Svidenská S., Schröfel A., Skalníková M., Svindrych Z., Krízek P., Ovesný M., Hagen G., et al. Separation of replication and transcription domains in nucleoli. J. Struct. Biol. 2014;188:259–266. doi: 10.1016/j.jsb.2014.10.001. PubMed DOI
Smirnov E., Cmarko D., Mazel T., Hornacek M., Raska I. Nucleolar DNA: The host and the guests. Histochem. Cell Biol. 2016;145:359–372. doi: 10.1007/s00418-016-1407-x. PubMed DOI
Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999;24:437–440. doi: 10.1016/S0968-0004(99)01460-7. PubMed DOI
Zillner K., Komatsu J., Filarsky K., Kalepu R., Bensimon A., Nemeth A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics. 2015;7:363–378. doi: 10.2217/epi.14.93. PubMed DOI
Gonzalez I.L., Sylvester J.E. Complete Sequence of the 43-Kb Human Ribosomal DNA Repeat—Analysis of the Intergenic Spacer. Genomics. 1995;27:320–328. doi: 10.1006/geno.1995.1049. PubMed DOI
Tautz D., Trick M., Dover G.A. Cryptic Simplicity in DNA Is a Major Source of Genetic-Variation. Nature. 1986;322:652–656. doi: 10.1038/322652a0. PubMed DOI
Haltiner M.M., Smale S.T., Tjian R. Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol. Cell. Biol. 1986;6:227–235. doi: 10.1128/MCB.6.1.227. PubMed DOI PMC
Kupriyanova N.S., Netchvolodov K.K., Sadova A.A., Cherepanova M.D., Ryskov A.P. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning. Gene. 2015;572:237–242. doi: 10.1016/j.gene.2015.07.019. PubMed DOI
Zentner G.E., Saiakhova A., Manaenkov P., Adams M.D., Scacheri P.C. Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res. 2011;39:4949–4960. doi: 10.1093/nar/gkq1326. PubMed DOI PMC
Copenhaver G.P., Putnam C.D., Denton M.L., Pikaard C.S. The Rna-Polymerase-I Transcription Factor Ubf Is a Sequence-Tolerant Hmg-Box Protein That Can Recognize Structured Nucleic-Acids. Nucleic Acids Res. 1994;22:2651–2657. doi: 10.1093/nar/22.13.2651. PubMed DOI PMC
Hu C.H., Mcstay B., Jeong S.W., Reeder R.H. Xubf, an Rna-Polymerase-I Transcription Factor, Binds Crossover DNA with Low Sequence Specificity. Mol. Cell. Biol. 1994;14:2871–2882. doi: 10.1128/MCB.14.5.2871. PubMed DOI PMC
Jacob M.D., Audas T.E., Mullineux S.T., Lee S. Where no RNA polymerase has gone before Novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus. 2012;3:315–319. doi: 10.4161/nucl.20585. PubMed DOI
O’Sullivan A.C., Sullivan G.J., McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell. Biol. 2002;22:657–668. doi: 10.1128/MCB.22.2.657-668.2002. PubMed DOI PMC
Sadova A.A., Kupriyanova N.S., Pavlova G.V. Mapping and Quantification of Non-Coding RNA Originating from the rDNA in Human Glioma Cells. Cancers. 2020;12:2090. doi: 10.3390/cancers12082090. PubMed DOI PMC
Zentner G.E., Balow S.A., Scacheri P.C. Genomic characterization of the mouse ribosomal DNA locus. G3 Genes Genomes Genet. 2014;4:243–254. doi: 10.1534/g3.113.009290. PubMed DOI PMC
Santoro R., Schmitz K.M., Sandoval J., Grummt I. Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep. 2010;11:52–58. doi: 10.1038/embor.2009.254. PubMed DOI PMC
Todd M.A., Huh M.S., Picketts D.J. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events. Eur. J. Hum. Genet. 2016;24:1453–1459. doi: 10.1038/ejhg.2016.40. PubMed DOI PMC
Wehner S., Dorrich A.K., Ciba P., Wilde A., Marz M. pRNA: NoRC-associated RNA of rRNA operons. RNA Biol. 2014;11:3–9. doi: 10.4161/rna.27448. PubMed DOI PMC
Anosova I., Melnik S., Tripsianes K., Kateb F., Grummt I., Sattler M. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucleic Acids Res. 2015;43:5208–5220. doi: 10.1093/nar/gkv365. PubMed DOI PMC
Mayer C., Neubert M., Grummt I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep. 2008;9:774–780. doi: 10.1038/embor.2008.109. PubMed DOI PMC
Mayer C., Schmitz K.M., Li J.W., Grummt I., Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell. 2006;22:351–361. doi: 10.1016/j.molcel.2006.03.028. PubMed DOI
McStay B., Grummt I. The Epigenetics of rRNA Genes: From Molecular to Chromosome Biology. Annu. Rev. Cell Dev. Biol. 2008;24:131–157. doi: 10.1146/annurev.cellbio.24.110707.175259. PubMed DOI
Moss T., Langlois F., Gagnon-Kugler T., Stefanovsky V. A housekeeper with power of attorney: The rRNA genes in ribosome biogenesis. Cell. Mol. Life Sci. 2007;64:29–49. doi: 10.1007/s00018-006-6278-1. PubMed DOI PMC
Moss T., Mars J.C., Tremblay M.G., Sabourin-Felix M. The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosom. Res. 2019;27:31–40. doi: 10.1007/s10577-018-09603-9. PubMed DOI
Nemeth A., Grummt I. Dynamic regulation of nucleolar architecture. Curr. Opin. Cell Biol. 2018;52:105–111. doi: 10.1016/j.ceb.2018.02.013. PubMed DOI
Sylvester J.E., Gonzales I.L., Mougey E.B. Structure and Organization of Vertebrate Ribosomal DNA. Nucl. Georget. Landes Biosci. 2004:58–73.
Bierhoff H., Dammert M.A., Brocks D., Dambacher S., Schotta G., Grummt I. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell. 2014;54:675–682. doi: 10.1016/j.molcel.2014.03.032. PubMed DOI
Diermeier S.D., Nemeth A., Rehli M., Grummt I., Langst G. Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet. 2013;9:e1003786. doi: 10.1371/journal.pgen.1003786. PubMed DOI PMC
Hall A.C., Ostrowski L.A., Mekhail K. Phase Separation as a Melting Pot for DNA Repeats. Trends Genet. 2019;35:589–600. doi: 10.1016/j.tig.2019.05.001. PubMed DOI
Latonen L. Phase-to-Phase with Nucleoli—Stress Responses, Protein Aggregation and Novel Roles of RNA. Front. Cell. Neurosci. 2019;13:151. doi: 10.3389/fncel.2019.00151. PubMed DOI PMC
Zhao Z.L., Dammert M.A., Grummt I., Bierhoff H. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress. Cell Rep. 2016;14:1876–1882. doi: 10.1016/j.celrep.2016.01.073. PubMed DOI
Zhao Z.L., Senturk N., Song C.L., Grummt I. lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Gene Dev. 2018;32:836–848. doi: 10.1101/gad.311688.118. PubMed DOI PMC
Audas T.E., Jacob M.D., Lee S. The nucleolar detention pathway: A cellular strategy for regulating molecular networks. Cell Cycle. 2012;11:2059–2062. doi: 10.4161/cc.20140. PubMed DOI PMC
Audas T.E., Jacob M.D., Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol. Cell. 2012;45:147–157. doi: 10.1016/j.molcel.2011.12.012. PubMed DOI
Lam Y.W., Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000Prime Rep. 2015;7:48. doi: 10.12703/P7-48. PubMed DOI PMC
Wang M.L., Bokros M., Theodoridis P.R., Lee S. Nucleolar Sequestration: Remodeling Nucleoli into Amyloid Bodies. Front. Genet. 2019;10:1179. doi: 10.3389/fgene.2019.01179. PubMed DOI PMC
Caudron-Herger M., Pankert T., Seiler J., Németh A., Voit R., Grummt I., Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015;34:2758–2774. doi: 10.15252/embj.201591458. PubMed DOI PMC
Zhang X.O., Gingeras T.R., Weng Z.P. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res. 2019;29:1402–1414. doi: 10.1101/gr.249789.119. PubMed DOI PMC
Agrawal S., Ganley A.R.D. The conservation landscape of the human ribosomal RNA gene repeats. PLoS ONE. 2018;13:e0207531. doi: 10.1371/journal.pone.0207531. PubMed DOI PMC
Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. B. 2014;90:119–129. doi: 10.2183/pjab.90.119. PubMed DOI PMC
Caburet S., Conti C., Schurra C., Lebofsky R., Edelstein S.J., Bensimon A. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res. 2005;15:1079–1085. doi: 10.1101/gr.3970105. PubMed DOI PMC
Kuo B.A., Gonzalez I.L., Gillespie D.A., Sylvester J.E. Human ribosomal RNA variants from a single individual and their expression in different tissues. Nucleic Acids Res. 1996;24:4817–4824. doi: 10.1093/nar/24.23.4817. PubMed DOI PMC
Smirnov E., Kalmárová M., Koberna K., Zemanová Z., Malínský J., Masata M., Cvacková Z., Michalová K., Raska I. NORs and their transcription competence during the cell cycle. Folia Biol. 2006;52:59–70. PubMed PMC
Gonzalez I.L., Sylvester J.E. Human rDNA: Evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics. 2001;73:255–263. doi: 10.1006/geno.2001.6540. PubMed DOI
Parks M.M., Kurylo C.M., Dass R.A., Bojmar L., Lyden D., Vincent C.T., Blanchard S.C. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 2018;4:eaao0665. doi: 10.1126/sciadv.aao0665. PubMed DOI PMC
Gibbons J.G., Branco A.T., Yu S.K., Lemos B. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat. Commun. 2014;5:4850. doi: 10.1038/ncomms5850. PubMed DOI
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Bughio F., Maggert K.A. The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosom. Res. 2019;27:19–30. doi: 10.1007/s10577-018-9591-2. PubMed DOI PMC
Porokhovnik L., Gerton J.L. Ribosomal DNA-connecting ribosome biogenesis and chromosome biology. Chromosom. Res. 2019;27:1–3. doi: 10.1007/s10577-018-9601-4. PubMed DOI
Agrawal S., Ganley A.R. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data. Methods Mol. Biol. 2016;1455:161–181. PubMed
Floutsakou I., Agrawal S., Nguyen T.T., Seoighe C., Ganley A.R., McStay B. The shared genomic architecture of human nucleolar organizer regions. Genome Res. 2013;23:2003–2012. doi: 10.1101/gr.157941.113. PubMed DOI PMC
Nagarajan N., Pop M. Sequence assembly demystified. Nat. Rev. Genet. 2013;14:157–167. doi: 10.1038/nrg3367. PubMed DOI
Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018;36:338. doi: 10.1038/nbt.4060. PubMed DOI PMC
Chin C.-S., Alexander D.H., Marks P., Klammer A.A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J., Eichler E.E., et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods. 2013;10:563–569. doi: 10.1038/nmeth.2474. PubMed DOI
Kim J.H., Dilthey A.T., Nagaraja R., Lee H.S., Koren S., Dudekula D., Wood Iii W.H., Piao Y., Ogurtsov A.Y., Utani K., et al. Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res. 2018;46:6712–6725. doi: 10.1093/nar/gky442. PubMed DOI PMC
Anglana M., Apiou F., Bensimon A., Debatisse M. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell. 2003;114:385–394. doi: 10.1016/S0092-8674(03)00569-5. PubMed DOI
Bensimon A., Simon A., Chiffaudel A., Croquette V., Heslot F., Bensimon D. Alignment and sensitive detection of DNA by a moving interface. Science. 1994;265:2096–2098. doi: 10.1126/science.7522347. PubMed DOI
Michalet X., Ekong R., Fougerousse F., Rousseaux S., Schurra C., Hornigold N., Van Slegtenhorst M., Wolfe J., Povey S., Beckmann J.S., et al. Dynamic molecular combing: Stretching the whole human genome for high-resolution studies. Science. 1997;277:1518–1523. doi: 10.1126/science.277.5331.1518. PubMed DOI
Tseng H., Chou W., Wang J., Zhang X., Zhang S., Schultz R.M. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS ONE. 2008;3:e1843. doi: 10.1371/journal.pone.0001843. PubMed DOI PMC
Jack C.V., Cruz C., Hull R.M., Keller M.A., Ralser M., Houseley J. Regulation of ribosomal DNA amplification by the TOR pathway. Proc. Natl. Acad. Sci. USA. 2015;112:9674–9679. doi: 10.1073/pnas.1505015112. PubMed DOI PMC
Salim D., Bradford W.D., Freeland A., Cady G., Wang J., Pruitt S.C., Gerton J.L. DNA replication stress restricts ribosomal DNA copy number. PLoS Genet. 2017;13:e1007006. doi: 10.1371/journal.pgen.1007006. PubMed DOI PMC
Xu B., Li H., Perry J.M., Singh V.P., Unruh J.R., Yu Z., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC
Mellink C.H., Bosma A.A., De Haan N.A. Variation in size of Ag-NORs and fluorescent rDNA in situ hybridization signals in six breeds of domestic pig. Hereditas. 1994;120:141–149. doi: 10.1111/j.1601-5223.1994.00141.x. PubMed DOI
Smirnov E., Hornacek M., Vacik T., Cmarko D., Raska I. Discontinuous transcription. Nucleus. 2018;9:149–160. doi: 10.1080/19491034.2017.1419112. PubMed DOI PMC
Goodpasture C., Bloom S.E. Visualization of Nucleolar Organizer Regions in Mammalian Chromosomes Using Silver Staining. Chromosoma. 1975;53:37–50. doi: 10.1007/BF00329389. PubMed DOI
Howell W.M., Black D.A. Controlled Silver-Staining of Nucleolus Organizer Regions with a Protective Colloidal Developer—a 1-Step Method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI
Porokhovnik L.N., Lyapunova N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosom. Res. 2019;27:5–17. doi: 10.1007/s10577-018-9587-y. PubMed DOI
Lambert S., Carr A.M. Checkpoint responses to replication fork barriers. Biochimie. 2005;87:591–602. doi: 10.1016/j.biochi.2004.10.020. PubMed DOI
Mirkin E.V., Mirkin S.M. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 2007;71:13–35. doi: 10.1128/MMBR.00030-06. PubMed DOI PMC
Braga E.A., Kapanadze B.I., Kupriianova N.S., Ivanova G.M., Brodianskiĭ V.M., Nechvolodov K.K., Shkutov G.A., Ryskov A.P., Nosikov V.V. Analysis of the distribution of microsatellites of seven motiffs within a cosmid of an ordered human chromosome 13 library. Mol. Biol. 1995;29:1001–1010. PubMed
Kupriianova N.S., Nechvolodov K.K., Kirilenko P.M., Kapanadze B.I., Iankovskii N.K., Ryskov A.P. Intragenomic polymorphism of ribosomal RNA genes from human chromosome 13. Mol. Biol. 1996;30:51–60. PubMed
Salim D., Gerton J.L. Ribosomal DNA instability and genome adaptability. Chromosom. Res. 2019;27:73–87. doi: 10.1007/s10577-018-9599-7. PubMed DOI
Klappenbach J.A., Dunbar J.M., Schmidt T.M. RRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microb. 2000;66:1328–1333. doi: 10.1128/AEM.66.4.1328-1333.2000. PubMed DOI PMC
Stankiewicz P., Lupski J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 2002;18:74–82. doi: 10.1016/S0168-9525(02)02592-1. PubMed DOI
Htun H., Dahlberg J.E. Topology and Formation of Triple-Stranded H-DNA. Science. 1989;243:1571–1576. doi: 10.1126/science.2648571. PubMed DOI
Katzenberg D.R., Tilley S.A., Birshtein B.K. Nucleotide-Sequence of an Unequal Sister Chromatid Exchange Site in a Mouse Myeloma Cell-Line. Mol. Cell. Biol. 1989;9:1324–1326. doi: 10.1128/MCB.9.3.1324. PubMed DOI PMC
Steinmetz M., Uematsu Y., Lindahl K.F. Hotspots of Homologous Recombination in Mammalian Genomes. Trends Genet. 1987;3:7–10. doi: 10.1016/0168-9525(87)90154-5. DOI
Stringer J.R. Recombination between Poly[D(Gt).D(Ca)] Sequences in Simian Virus-40-Infected Cultured-Cells. Mol. Cell. Biol. 1985;5:1247–1259. doi: 10.1128/MCB.5.6.1247. PubMed DOI PMC
Treco D., Arnheim N. The evolutionarily conserved repetitive sequence d(TG.AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol. Cell. Biol. 1986;6:3934–3947. doi: 10.1128/MCB.6.11.3934. PubMed DOI PMC
Wahls W.P., Wallace L.J., Moore P.D. Hypervariable Minisatellite DNA Is a Hotspot for Homologous Recombination in Human-Cells. Cell. 1990;60:95–103. doi: 10.1016/0092-8674(90)90719-U. PubMed DOI
Ferreira J., Paolella G., Ramos C., Lamond A.I. Spatial organization of large-scale chromatin domains in the nucleus: A magnified view of single chromosome territories. J. Cell Biol. 1997;139:1597–1610. doi: 10.1083/jcb.139.7.1597. PubMed DOI PMC
Peng J.C., Karpen G.H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 2007;9:25–35. doi: 10.1038/ncb1514. PubMed DOI PMC
Sadoni N., Langer S., Fauth C., Bernardi G., Cremer T., Turner B.M., Zink D. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J. Cell Biol. 1999;146:1211–1226. doi: 10.1083/jcb.146.6.1211. PubMed DOI PMC
van Koningsbruggen S., Gierlinski M., Schofield P., Martin D., Barton G.J., Ariyurek Y., den Dunnen J.T., Lamond A.I. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli. Mol. Cell. Biol. 2010;21:3735–3748. doi: 10.1091/mbc.e10-06-0508. PubMed DOI PMC
Carvalho C.M., Lupski J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016;17:224–238. doi: 10.1038/nrg.2015.25. PubMed DOI PMC
Erickson J.M., Schmickel R.D. A Molecular-Basis for Discrete Size Variation in Human Ribosomal DNA. Am. J. Hum. Genet. 1985;37:311–325. PubMed PMC
Warmerdam D.O., van den Berg J., Medema R.H. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats. Cell Rep. 2016;14:2519–2527. doi: 10.1016/j.celrep.2016.02.048. PubMed DOI
Kobayashi T., Heck D.J., Nomura M., Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: Requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 1998;12:3821–3830. doi: 10.1101/gad.12.24.3821. PubMed DOI PMC
Kim N., Jinks-Robertson S. Transcription as a source of genome instability. Nat. Rev. Genet. 2012;13:204–214. doi: 10.1038/nrg3152. PubMed DOI PMC
Hancks D.C., Kazazian H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9. PubMed DOI PMC
Munoz-Lopez M., Garcia-Perez J.L. DNA Transposons: Nature and Applications in Genomics. Curr. Genom. 2010;11:115–128. doi: 10.2174/138920210790886871. PubMed DOI PMC
Carmo-Fonseca M. Assembly of the nucleolus: In need of revision. EMBO J. 2015;34:2731–2732. doi: 10.15252/embj.201593185. PubMed DOI PMC
Malig M., Hartono S.R., Giafaglione J.M., Sanz L.A., Chedin F. Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J. Mol. Biol. 2020;432:2271–2288. doi: 10.1016/j.jmb.2020.02.014. PubMed DOI PMC
Vydzhak O., Luke B., Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J. Mol. Biol. 2020;432:4287–4304. doi: 10.1016/j.jmb.2020.05.011. PubMed DOI
Niehrs C., Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 2020;21:167–178. doi: 10.1038/s41580-019-0206-3. PubMed DOI PMC
Abraham K.J., Khosraviani N., Chan J.N.Y., Gorthi A., Samman A., Zhao D.Y., Wang M., Bokros M., Vidya E., Ostrowski L.A., et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585:298–302. doi: 10.1038/s41586-020-2497-0. PubMed DOI PMC
Kominami R., Urano Y., Mishima Y., Muramatsu M. Organization of ribosomal RNA gene repeats of the mouse. Nucleic Acids Res. 1981;9:3219–3233. doi: 10.1093/nar/9.14.3219. PubMed DOI PMC
Lebofsky R., Bensimon A. DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol. Cell. Biol. 2005;25:6789–6797. doi: 10.1128/MCB.25.15.6789-6797.2005. PubMed DOI PMC
Maden B.E., Dent C.L., Farrell T.E., Garde J., McCallum F.S., Wakeman J.A. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem. J. 1987;246:519–527. doi: 10.1042/bj2460519. PubMed DOI PMC
Sasaki T., Okazaki T., Muramatsu M., Kominami R. Variation among Mouse Ribosomal-Rna Genes within and between Chromosomes. Mol. Biol. Evol. 1987;4:594–601. PubMed
Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wires RNA. 2015;6:225–242. doi: 10.1002/wrna.1269. PubMed DOI PMC
Montellese C., Montel-Lehry N., Henras A.K., Kutay U., Gleizes P.E., O’Donohue M.F. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation. Nucleic Acids Res. 2017;45:6822–6836. doi: 10.1093/nar/gkx253. PubMed DOI PMC
Leffers H., Andersen A.H. The Sequence of 28s Ribosomal-Rna Varies within and between Human Cell-Lines. Nucleic Acids Res. 1993;21:1449–1455. doi: 10.1093/nar/21.6.1449. PubMed DOI PMC
Shiao Y.H., Lupascu S.T., Gu Y.D., Kasprzak W., Hwang C.J., Fields J.R., Leighty R.M., Quiñones O., Shapiro B.A., Alvord W.G., et al. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLoS ONE. 2009;4:e7505. doi: 10.1371/journal.pone.0007505. PubMed DOI PMC
Erickson J.M., Rushford C.L., Dorney D.J., Wilson G.N., Schmickel R.D. Structure and variation of human ribosomal DNA: Molecular analysis of cloned fragments. Gene. 1981;16:1–9. doi: 10.1016/0378-1119(81)90055-X. PubMed DOI
Ryskov A.P., Kupriianova N.S., Kapanadze B.I., Nechvolodov K.K., Pozmogova G.E., Prosniak M.I., Iankovskiĭ N.K. Frequency of various mini- and micro-satellite sequences in DNA of human chromosome 13. Genetika. 1993;29:1750–1754. PubMed
Nadel J., Athanasiadou R., Lemetre C., Wijetunga N.A., Broin P.O., Sato H., Zhang Z., Jeddeloh J., Montagna C., Golden A., et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenet. Chromatin. 2015;8:46. doi: 10.1186/s13072-015-0040-6. PubMed DOI PMC
Shi Z., Fujii K., Kovary K.M., Genuth N.R., Rost H.L., Teruel M.N., Batna M. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Mol. Cell. 2017;67:71–83.e7. doi: 10.1016/j.molcel.2017.05.021. PubMed DOI PMC
Haber J.E. DNA Repair: The Search for Homology. BioEssays. 2018;40:e1700229. doi: 10.1002/bies.201700229. PubMed DOI PMC
van Sluis M., McStay B. Nucleolar reorganization in response to rDNA damage. Curr. Opin. Cell Biol. 2017;46:81–86. doi: 10.1016/j.ceb.2017.03.004. PubMed DOI
Renkawitz J., Lademann C.A., Jentsch S. DNA damage Mechanisms and principles of homology search during recombination. Nat. Rev. Mol. Cell Biol. 2014;15:369–383. doi: 10.1038/nrm3805. PubMed DOI
Birch J.L., Zomerdijk J.C. Structure and function of ribosomal RNA gene chromatin. Pt 4Biochem. Soc. Trans. 2008;36:619–624. doi: 10.1042/BST0360619. PubMed DOI PMC
Heintzman N.D., Stuart R.K., Hon G., Fu Y., Ching C.W., Hawkins R.D., Barrera L.O., Van Calcar S., Qu C., Ching K.A., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 2007;39:311–318. doi: 10.1038/ng1966. PubMed DOI
McKeown P.C., Shaw P.J. Chromatin: Linking structure and function in the nucleolus. Chromosoma. 2009;118:11–23. doi: 10.1007/s00412-008-0184-2. PubMed DOI
Santoro R., De Lucia F. Many players, one goal: How chromatin states are inherited during cell division. Biochem. Cell Biol. 2005;83:332–343. doi: 10.1139/o05-021. PubMed DOI
Shaw P., McKeown P. The Nucleolus. Springer; New York, NY, USA: 2011. The structure of rDNA chromatin; pp. 43–55.
Tsekrekou M., Stratigi K., Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int. J. Mol. Sci. 2017;18:1411. doi: 10.3390/ijms18071411. PubMed DOI PMC
Zillner K., Filarsky M., Rachow K., Weinberger M., Langst G., Nemeth A. Large-scale organization of ribosomal DNA chromatin is regulated by Tip5. Nucleic Acids Res. 2013;41:5251–5262. doi: 10.1093/nar/gkt218. PubMed DOI PMC
Matson J.P., Zou L. A genome-wide and cotranscriptional suppressor of R loops. Genes Dev. 2020;34:863–864. doi: 10.1101/gad.339861.120. PubMed DOI PMC
Salvi J.S., Chan J.N., Szafranski K., Liu T.T., Wu J.D., Olsen J.B., Khanam N., Poon B.P., Emili A., Mekhail K. Roles for Pbp1 and Caloric Restriction in Genome and Lifespan Maintenance via Suppression of RNA-DNA Hybrids. Dev. Cell. 2014;30:177–191. doi: 10.1016/j.devcel.2014.05.013. PubMed DOI
Warmerdam D.O., Wolthuis R.M.F. Keeping ribosomal DNA intact: A repeating challenge. Chromosom. Res. 2019;27:57–72. doi: 10.1007/s10577-018-9594-z. PubMed DOI PMC
Ganley A.R.D., Kobayashi T. Ribosomal DNA and cellular senescence: New evidence supporting the connection between rDNA and aging. FEMS Yeast Res. 2014;14:49–59. doi: 10.1111/1567-1364.12133. PubMed DOI
Strehler B.L., Chang M.P., Johnson L.K. Loss of hybridizable ribosomal DNA from human post-mitotic tissues during aging: I. Age-dependent loss in human myocardium. Mech. Ageing Dev. 1979;11:371–378. doi: 10.1016/0047-6374(79)90012-5. PubMed DOI
Tiku V., Antebi A. Nucleolar Function in Lifespan Regulation. Trends Cell Biol. 2018;28:662–672. doi: 10.1016/j.tcb.2018.03.007. PubMed DOI
Malinovskaya E.M., Ershova E.S., Golimbet V.E., Porokhovnik L.N., Lyapunova N.A., Kutsev S.I., Veiko N.N., Kostyuk S.V. Copy Number of Human Ribosomal Genes With Aging: Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group. Front. Genet. 2018;9:306. doi: 10.3389/fgene.2018.00306. PubMed DOI PMC
Boyd L.J., Livingston J.S., Brown M.G., Lawce H.J., Gilhooly J.T., Wildin R.S., Linck L.M., Magenis R.E., Pillers D.-A.M. Meiotic exchange event within the stalk region of an inverted chromosome 22 results in a recombinant chromosome with duplication of the distal long arm. Am. J. Med. Genet. A. 2005;138:355–360. doi: 10.1002/ajmg.a.30895. PubMed DOI
Udugama M., Sanij E., Voon H.P.J., Son J., Hii L., Henson J.D., Chan F.L., Chang F.T.M., Liu Y., Pearson R.B., et al. Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proc. Natl. Acad. Sci. USA. 2018;115:4737–4742. doi: 10.1073/pnas.1720391115. PubMed DOI PMC
Valori V., Tus K., Laukaitis C., Harris D.T., LeBeau L., Maggert K.A. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics. 2020;15:85–106. doi: 10.1080/15592294.2019.1649930. PubMed DOI PMC
Yoshikawa M., Fujii Y.R. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. Biomed. Res. Int. 2016;2016:1–14. doi: 10.1155/2016/7562085. PubMed DOI PMC
Diesch J., Hannan R.D., Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci. 2014;4:43. doi: 10.1186/2045-3701-4-43. PubMed DOI PMC
Narla A., Ebert B.L. Ribosomopathies: Human disorders of ribosome dysfunction. Blood. 2010;115:3196–3205. doi: 10.1182/blood-2009-10-178129. PubMed DOI PMC
Son J., Hannan K.M., Poortinga G., Hein N., Cameron D.P., Ganley A.R.D., Sheppard K.E., Pearson R.B., Hannan R.D., Sanij E. rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Front. Cell Dev. Biol. 2020;8:568. doi: 10.3389/fcell.2020.00568. PubMed DOI PMC
Basener W.F., Sanford J.C. The fundamental theorem of natural selection with mutations. J. Math. Biol. 2018;76:1589–1622. doi: 10.1007/s00285-017-1190-x. PubMed DOI PMC
Lynch M. Mutation and Human Exceptionalism: Our Future Genetic Load. Genetics. 2016;202:869–875. doi: 10.1534/genetics.115.180471. PubMed DOI PMC
Hall A.C., Ostrowski L.A., Pietrobon V., Mekhail K. Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus. 2017;8:162–181. doi: 10.1080/19491034.2017.1292193. PubMed DOI PMC
Non-canonical DNA structures in the human ribosomal DNA
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
Variability of Human rDNA and Transcription Activity of the Ribosomal Genes