Novel disease-causing variants and phenotypic features of X-linked megalocornea

. 2022 Jun ; 100 (4) : 431-439. [epub] 20211013

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34644435

Grantová podpora
UNCE/MED/007 Univerzita Karlova v Praze
PROGRES-Q26/LF1 Univerzita Karlova v Praze
MR/S031820/1 Medical Research Council - United Kingdom
SVV 260367/2017 Univerzita Karlova v Praze
GACR 20-19278S Grantová Agentura C\̌eské Republiky
GACR 20-19278S Grantová Agentura České Republiky

PURPOSE: The aim of the study was to describe the phenotype and molecular genetic causes of X-linked megalocornea (MGC1). We recruited four British, one New Zealand, one Vietnamese and four Czech families. METHODS: All probands and three female carriers underwent ocular examination and Sanger sequencing of the CHRDL1 gene. Two of the probands also had magnetic resonance imaging (MRI) of the brain. RESULTS: We identified nine pathogenic or likely pathogenic and one variant of uncertain significance in CHRDL1, of which eight are novel. Three probands had ocular findings that have not previously been associated with MGC1, namely pigmentary glaucoma, unilateral posterior corneal vesicles, unilateral keratoconus and unilateral Fuchs heterochromic iridocyclitis. The corneal diameters of the three heterozygous carriers were normal, but two had abnormally thin corneas, and one of these was also diagnosed with unilateral keratoconus. Brain MRI identified arachnoid cysts in both probands, one also had a neuroepithelial cyst, while the second had a midsagittal neurodevelopmental abnormality (cavum septum pellucidum et vergae). CONCLUSION: The study expands the spectrum of pathogenic variants and the ocular and brain abnormalities that have been identified in individuals with MGC1. Reduced corneal thickness may represent a mild phenotypic feature in some heterozygous female carriers of CHRDL1 pathogenic variants.

Zobrazit více v PubMed

Davidson AE, Cheong SS, Hysi PG et al. (2014): Association of CHRDL1 mutations and variants with X-linked megalocornea, Neuhauser syndrome and central corneal thickness. PLoS One 9: e104163.

Gilani F, Cortese M, Ambrosio RR et al. (2013): Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J Cataract Refract Surg 39: 1707-1712.

Goebels S, Eppig T, Wagenpfeil S, Cayless A, Seitz B & Langenbucher A (2017): Complementary keratoconus indices based on topographical interpretation of biomechanical waveform parameters: a supplement to established keratoconus indices. Comput Math Methods Med 2017: 5293573.

Karczewski KJ, Francioli LC, Tiao G et al. (2020): The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581: 434-443.

Liu T, Li B, Zheng XF et al. (2019): Chordin-like 1 improves osteogenesis of bone marrow mesenchymal stem cells through enhancing BMP4-SMAD pathway. Front Endocrinol (Lausanne) 10: 360.

Mackey DA, Buttery RG, Wise GM & Denton MJ (1991): Description of X-linked megalocornea with identification of the gene locus. Arch Ophthalmol 109: 829-833.

Meire FM (1994): Megalocornea. Clinical and genetic aspects. Doc Ophthalmol 87: 1-121.

Meire FM, Bleeker-Wagemakers EM, Oehler M, Gal A & Delleman JW (1991): X-linked megalocornea. Ocular findings and linkage analysis. Ophthalmic Paediatr Genet 12: 153-157.

Mohamed Q & Zamir E (2005): Update on Fuchs' uveitis syndrome. Curr Opin Ophthalmol 16: 356-363.

Nakayama N, Han CE, Scully S et al. (2001): A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages. Dev Biol 232: 372-387.

Noguchi A, Okumura N, Sotozono C & Kinoshita S (2018): Effect of posterior corneal vesicles on corneal endothelial cell density and anisometropic amblyopia. Cornea 37: 813-817.

Pardos GJ, Krachmer JH & Mannis MJ (1981): Posterior corneal vesicles. Arch Ophthalmol 99: 1573-1577.

Pfirrmann T, Emmerich D, Ruokonen P et al. (2015): Molecular mechanism of CHRDL1-mediated X-linked megalocornea in humans and in Xenopus model. Hum Mol Genet 24: 3119-3132.

Rabinowitz YS, Yang H, Brickman Y, Akkina J, Riley C, Rotter JI & Elashoff J (1996): Videokeratography database of normal human corneas. Br J Ophthalmol 80: 610-616.

Richards S, Aziz N, Bale S et al. (2015): Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405-424.

Roche O, Dureau P, Uteza Y & Dufier JL (2002): Congenital megalocornea. J Fr Ophtalmol 25: 312-318.

Sakuta H, Suzuki R, Takahashi H et al. (2001): Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293: 111-115.

Scuderi G, Contestabile MT, Scuderi L, Librando A, Fenicia V & Rahimi S (2019): Pigment dispersion syndrome and pigmentary glaucoma: a review and update. Int Ophthalmol 39: 1651-1662.

Skuta GL, Sugar J & Ericson ES (1983): Corneal endothelial cell measurements in megalocornea. Arch Ophthalmol 101: 51-53.

Wahba SS, Roshdy MM, Elkitkat RS & Naguib KM (2016): Rotating scheimpflug imaging indices in different grades of keratoconus. J Ophthalmol 2016: 6392472.

Webb TR, Matarin M, Gardner JC et al. (2012): X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development. Am J Hum Genet 90: 247-259.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...