NORs and their transcription competence during the cell cycle

. 2006 ; 52 (3) : 59-70.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17089916

Grantová podpora
Wellcome Trust - United Kingdom
075834 Wellcome Trust - United Kingdom
/075834/04/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 17089916
PubMed Central PMC2446406
PII: file/6164/fb2006a0009.pdf
Knihovny.cz E-zdroje

In human cells ribosomal genes are organized as clusters, NORs, situated on the short arms of acrocentric chromosomes. It was found that essential components of the RNA polymerase I transcription machinery, including UBF, can be detected on some NORs, termed "competent" NORs, during mitosis. The competent NORs are believed to be transcriptionally active during interphase. However, since individual NORs were not observed in the cell nucleus, their interphase status remains unclear. To address this problem, we detected the competent NORs by two commonly used methods, UBF immunofluorescence and silver staining, and combined them with FISH for visualization of rDNA and/or specific chromosomes. We found that the numbers of competent NORs on specific chromosomes were largely conserved in the subsequent cell cycles, with certain NOR-bearing homologues displaying a very stable pattern of competence. Importantly, those and only those NORs that were loaded with UBF incorporated bromo-uridine in metaphase after stimulation with roscovitine and in telophase, suggesting that competent and only competent NORs contain ribosomal genes transcriptionally active during interphase. Applying premature chromosome condensation with calyculin A, we visualized individual NORs in interphase cells, and found the same pattern of competence as observed in the mitotic chromosomes.

Zobrazit více v PubMed

Babu KA, Verma RS. Structural and functional aspects of nucleolar organizer regions (NORs) of human chromosomes. Int. Rev. Cytol. 1985;94:151–176. PubMed

Bazett-Jones DP, Leblanc B, Herfort M, Moss T. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science. 1994;264:1134–1137. PubMed

Bezrookove V, Smits R, Moeslein G, Fodde R, Tanke HJ, Raap AK, Darroudi F. Premature chromosome condensation revisited: a novel chemical approach permits efficient cytogenetic analysis of cancers. Genes Chromosomes Cancer. 2003;38:177–186. PubMed

Bui HT, Yamaoka E, Miyano T. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes. Biol. Reprod. 2004;70:1843–1851. PubMed

Busch H, Smetana K. The Nucleolus. New York: Academic Press; 1970.

Chen TR. Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenet. Cell Genet. 1988;48:19–24. PubMed

Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S. Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J. Cell Biol. 2005;(1):41–54. PubMed PMC

Copenhaver GP, Putnam CD, Denton ML, Pikaard CS. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res. 1994;22:2651–2657. PubMed PMC

de Capoa A, Felli MP, Baldini A, Rocchi M, Archidiacono N, Aleixandre C, Miller OJ, Miller DA. Relationship between the number and function of human ribosomal genes. Hum. Genet. 1988;79:301–304. PubMed

Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V. “Ag-NORs” are not always true NORs: new evidence in mammals. Cytogenet. Genome Res. 2002;98:75–77. PubMed

Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell. 2000;11:2705–17. PubMed PMC

Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T. A kinetic framework for a mammalian RNA polymerase in vivo. Science. 2002;298:1623–1626. PubMed

Erickson JM, Rushford CL, Dorney DJ, Wilson GN, Schmickel RD. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981;16:1–9. PubMed

Ferraro M, Prantera G. Human NORs show correlation between transcriptional activity, DNase I sensitivity, and hypomethylation. Cytogenet. Cell Genet. 1988;47:58–61. PubMed

French SL, Osheim YN, Cioci F, Nomura M, Beyer AL. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell Biol. 2003;23:1558–1568. PubMed PMC

Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JC. TBP-TAF complex SL1 directs RNA polymerase l pre-initiation complex formation and stabilizes UBF at the rDNA promoter. J. Biol. Chem. 2005;280:29551–29558. PubMed PMC

Gebrane-Younes J, Fomproix N, Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J. Cell Sci. 1997;110:2429–2440. PubMed

Ghosh S, Ghosh I. Variation of stemline karyotype in a HeLa cell line. Cancer Res. Clin. Oncol. 1975;84:129–133. PubMed

Goodpasture C, Bloom SE. Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma. 1975;53:37–50. PubMed

Hameister H, Sperling K. Description of a chromosome replication unit in individual prematurely condensed human S-phase chromosomes. Chromosoma. 1984;90:389–393. PubMed

Heliot L, Mongelard F, Klein C, O’Donohue MF, Chassery JM, Robert-Nicoud M, Usson Y. Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J. Histochem. Cytochem. 2000;48:13–20. PubMed

Henderson AS, Warburton D, Atwood KC. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. PubMed PMC

Howell WM, Black DA. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980;36:1014–1015. PubMed

Hu CH, McStay B, Jeong SW, Reeder RH. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol. Cell Biol. 1994;14:2871–2882. PubMed PMC

Jantzen HM, Admon A, Bell SP, Tjian R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature. 1990;344:830–836. PubMed

Jordan P, Mannervik M, Tora L, Carmo-Fonseca M. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell Biol. 1996;133:225–234. PubMed PMC

Koberna K, Stanek D, Malinsky J, Eltsov M, Pliss A, Ctrnacta V, Cermanova S, Raska I. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999;108:325–335. PubMed

Koberna K, Stanek D, Malinsky J, Ctrnacta V, Cermanova S, Novotna J, Kopsky V, Raska I. In situ fluorescence visualization of bromouridine incorporated into newly transcribed nucleolar RNA. Acta Histochem. 2000;102:15–20. PubMed

Learned RM, Cordes S, Tjian R. Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol. Cell Biol. 1985;5:1358–1369. PubMed PMC

Leitch AR, Mosgoller W, Shi M, Heslop-Harrison JS. Different patterns of rDNA organization at interphase in nuclei of wheat and rye. J. Cell Sci. 1992;101:751–757. PubMed

Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 2004;166:787–800. PubMed PMC

Long EO, Dawid IB. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. PubMed

Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, Popescu N, Ried T. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59:141–150. PubMed

Mais C, Wright JE, Prieto JL, Raggett SL, McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005;19:50–64. PubMed PMC

Mellink CH, Bosma AA, De Haan NA. Variation in size of Ag-NORs and fluorescent rDNA in situ hybridization signals in six breeds of domestic pig. Hereditas. 1994;120:141–149. PubMed

O’Sullivan AC, Sullivan GJ, McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 2002;22:657–668. PubMed PMC

Pliss A, Koberna K, Vecerova J, Malinsky J, Masata M, Fialova M, Raska I, Berezney R. Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J. Cell Biochem. 2005;94:554–565. PubMed

Prieto JL, McStay B. Nucleolar biogenesis: the first small steps. Biochem. Soc. Trans. 2005;33(Pt):1441–1443. PubMed

Puvion-Dutilleul F, Bachellerie JP, Puvion E. Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma. 1991;100:395–409. PubMed

Roussel P, Hernandez-Verdun D. Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp. Cell Res. 1994;214:465–472. PubMed

Roussel P, Andre C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 1996;133:235–246. PubMed PMC

Rufas JS, Gimenez-Martin G, Esponda P. Presence of a chromatid core in mitotic and meiotic chromosomes of grasshoppers. Cell Biol. Int. Rep. 1982;6:261–267. PubMed

Savino TM, Gebrane-Younes J, De Mey J, Sibarita JB, Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J. Cell Biol. 2001;153:1097–1110. PubMed PMC

Sirri V, Roussel P, Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J. Cell Sci. 1999;112:3259–3268. PubMed

Sirri V, Roussel P, Hernandez-Verdun D. The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron. 2000;31:121–126. PubMed

Smetana K, Likovsky Z. The number of nucleolar silver-stained granules of active nucleolus organizer regions in mitotic and interphase cells of rat Yoshida and Zajdela ascetic tumors. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1982;40:263–71. PubMed

Smetana K, Jiraskova I, Perlaky L. The silver reaction of nucleolar proteins in the main structural compartments of ring-shaped nucleoli in smear preparations. Acta Histochem. 1999;101:167–183. PubMed

Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res. 2001;29:3241–3247. PubMed PMC

Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J. 2001;20:2867–2874. PubMed PMC

Suzuki H, Wakana S, Yonekawa H, Moriwaki K, Sakurai S, Nevo E. Variations in ribosomal DNA and mitochondrial DNA among chromosomal species of subterranean mole rats. Mol. Biol. Evol. 1996;13:85–92. PubMed

Tosuji H, Fusetani N, Seki Y. Calyculin A causes the activation of histone H1 kinase and condensation of chromosomes in unfertilized sea urchin eggs independently of the maturation-promoting factor. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2003;135:415–424. PubMed

Wachtler F, Hopman AH, Wiegant J, Schwarzacher HG. On the position of nucleolus organizer regions (NORs) in interphase nuclei. Studies with a new, non-autoradiographic in situ hybridization method. Exp. Cell Res. 1986;167:227–240. PubMed

Warburton D, Henderson AS. Sequential silver staining and hybridization in situ on nucleolus organizing regions in human cells. Cytogenet. Cell Genet. 1979;24:168–175. PubMed

Weisenberger D, Scheer UA. A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J. Cell Biol. 1995;129:561–575. PubMed PMC

Zurita F, Jimenez R, Burgos M, Diaz de la Guardia RD. Sequential silver staining and in situ hybridization reveal a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: a hypothesis for NOR structure and function. J. Cell Sci. 1998;111:1433–1439. PubMed

Zurita F, Jimenez R, Diaz de la Guardia R, Burgos M. The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in-situ hybridization study. Chromosome Res. 1999;7:563–570. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace