Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells

. 2009 Feb ; 165 (2) : 107-17. [epub] 20081112

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19056497

Grantová podpora
Wellcome Trust - United Kingdom
075834/04/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 19056497
PubMed Central PMC2658736
DOI 10.1016/j.jsb.2008.10.007
PII: S1047-8477(08)00253-0
Knihovny.cz E-zdroje

Mammalian chromosomes occupy chromosome territories within nuclear space the positions of which are generally accepted as non-random. However, it is still controversial whether position of chromosome territories/chromatin is maintained in daughter cells. We addressed this issue and investigated maintenance of various chromatin regions of unknown composition as well as nucleolus-associated chromatin, a significant part of which is composed of nucleolus organizer region-bearing chromosomes. The photoconvertible histone H4-Dendra2 was used to label such regions in transfected HepG2 cells, and its position was followed up to next interphase. The distribution of labeled chromatin in daughter cells exhibited a non-random character. However, its distribution in a vast majority of daughter cells extensively differed from the original ones and the labeled nucleolus-associated chromatin differently located into the vicinity of different nucleoli. Therefore, our results were not consistent with a concept of preservation chromatin position. This conclusion was supported by the finding that the numbers of nucleoli significantly differed between the two daughter cells. Our results support a view that while the transfected daughter HepG2 cells maintain some features of the parental cell chromosome organization, there is also a significant stochastic component associated with reassortment of chromosome territories/chromatin that results in their positional rearrangements.

Zobrazit více v PubMed

Belmont A.S., Dietzel S., Nye A.C., Strukov Y.G., Tumbar T. Large-scale chromatin structure and function. Curr. Opin. Cell Biol. 1999;11:307–311. PubMed

Berr A., Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics. 2007;176:853–863. PubMed PMC

Bickmore W.A., Chubb J.R. Dispatch. Chromosome position: now, where was I? Curr. Biol. 2003;13:R357–R359. PubMed

Boisvert F.M., van Koningsbruggen S., Navascues J., Lamond A.I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007;8:574–585. PubMed

Bolzer A., Kreth G., Solovei I., Koehler D., Saracoglu K., Fauth C., Müller S., Eils R., Cremer C., Speicher M.R., Cremer T. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005;3:e157. PubMed PMC

Boyle S., Gilchrist S., Bridger J.M., Mahy N.L., Ellis J.A., Bickmore W.A. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 2001;10:211–219. PubMed

Branco M.R., Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 2006;4:e138. PubMed PMC

Cavalli G. Chromosome kissing. Curr. Opin. Genet. Dev. 2007;17:443–450. PubMed

Chuang C.H., Belmont A.S. Moving chromatin within the interphase nucleus-controlled transitions? Semin. Cell Dev. Biol. 2007;18:698–706. PubMed PMC

Clemson C.M., Hall L.L., Byron M., McNeil J., Lawrence J.B. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc. Natl. Acad. Sci. USA. 2006;103:7688–7693. PubMed PMC

Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2:292–301. PubMed

Essers J., van Cappellen W.A., Theil A.F., van Drunen E., Jaspers N.G., Hoeijmakers J.H., Wyman C., Vermeulen W., Kanaar R. Dynamics of relative chromosome position during the cell cycle. Mol. Biol. Cell. 2005;16:769–775. PubMed PMC

Federico C., Cantarella C.D., Di Mare P., Tosi S., Saccone S. The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma. 2008;117:399–410. PubMed

Fraser P., Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447:413–417. PubMed

Frey M.R., Bailey A.D., Weiner A.M., Matera A.G. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr. Biol. 1999;9:126–135. PubMed

Gerlich D., Beaudouin J., Kalbfuss B., Daigle N., Eils R., Ellenberg J. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell. 2003;112:751–764. PubMed

Gerlich D., Ellenberg J. Dynamics of chromosome positioning during the cell cycle. Curr. Opin. Cell Biol. 2003;15:664–671. PubMed

Gonda K., Fowler J., Katoku-Kikyo N., Haroldson J., Wudel J., Kikyo N. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat. Cell Biol. 2003;5:205–210. PubMed

Gurskaya N.G., Verkhusha V.V., Shcheglov A.S., Staroverov D.B., Chepurnykh T.V., Fradkov A.F., Lukyanov S., Lukyanov K.A. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 2006;24:461–465. PubMed

Kalmarova M., Smirnov E., Kovacik L., Popov A., Raska I. Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis. Physiol. Res. 2008;57:421–425. PubMed PMC

Kalmarova M., Smirnov E., Masata M., Koberna K., Ligasova A., Popov A., Raska I. Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli. J. Struct. Biol. 2007;160:49–56. PubMed PMC

Kimura H., Cook P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 2001;153:1341–1353. PubMed PMC

Kumaran R.I., Spector D.L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 2008;180:51–65. PubMed PMC

Kumaran R.I., Thakar R., Spector D.L. Chromatin dynamics and gene positioning. Cell. 2008;132:929–934. PubMed PMC

Kupper K., Kolbl A., Biener D., Dittrich S., von Hase J., Thormeyer T., Fiegler H., Carter N.P., Speicher M.R., Cremer T., Cremer M. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma. 2007;116:285–306. PubMed PMC

Kurakin A. Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J. Mol. Recognit. 2007;20:205–214. PubMed

Lanctot C., Cheutin T., Cremer M., Cavalli G., Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 2007;8:104–115. PubMed

Leger I., Guillaud M., Krief B., Brugal G. Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. Cytometry. 1994;16:313–323. PubMed

Manuelidis L., Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988;96:397–410. PubMed

Meaburn K.J., Misteli T., Soutoglou E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer. Biol. 2007;17:80–90. PubMed PMC

Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800. PubMed

Nagele R.G., Freeman T., McMorrow L., Thomson Z., Kitson-Wind K., Lee H. Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J. Cell Sci. 1999;112:525–535. PubMed

Nunez E., Kwon Y.S., Hutt K.R., Hu Q., Cardamone M.D., Ohgi K.A., Garcia-Bassets I., Rose D.W., Glass C.K., Rosenfeld M.G. Nuclear receptor-enhanced transcription requires motor- and LSD1-dependent gene networking in interchromatin granules. Cell. 2008;132:996–1010. PubMed

Nunez E., Kwon Y.S., Hutt K.R., Hu Q., Cardamone M.D., Ohgi K.A., Garcia-Bassets I., Rose D.W., Glass C.K., Rosenfeld M.G. Retracted: nuclear receptor-enhanced transcription requires motor- and LSD1-dependent gene networking in interchromatin granules. Cell. 2008;134:189. PubMed

Parada L., Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 2002;12:425–432. PubMed

Parada L.A., McQueen P.G., Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5:R44. PubMed PMC

Parada L.A., Roix J.J., Misteli T. An uncertainty principle in chromosome positioning. Trends Cell Biol. 2003;13:393–396. PubMed

Peng J.C., Karpen G.H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 2007;9:25–35. PubMed PMC

Raska I., Shaw P.J., Cmarko D. New insights into nucleolar architecture and activity. Int. Rev. Cytol. 2006;255:177–235. PubMed

Roix J.J., McQueen P.G., Munson P.J., Parada L.A., Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 2003;34:287–291. PubMed

Schul W., van Der Kraan I., Matera A.G., van Driel R., de Jong L. Nuclear domains enriched in RNA 3′-processing factors associate with coiled bodies and histone genes in a cell cycle-dependent manner. Mol. Biol. Cell. 1999;10:3815–3824. PubMed PMC

Smirnov E., Kalmarova M., Koberna K., Zemanova Z., Malinsky J., Masata M., Cvackova Z., Michalova K., Raska I. NORs and their transcription competence during the cell cycle. Folia Biol. (Praha) 2006;52:59–70. PubMed PMC

Thomson I., Gilchrist S., Bickmore W.A., Chubb J.R. The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr. Biol. 2004;14:166–172. PubMed

Volpi E.V., Chevret E., Jones T., Vatcheva R., Williamson J., Beck S., Campbell R.D., Goldsworthy M., Powis S.H., Ragoussis J. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 2000;113:1565–1576. PubMed

Walter J., Schermelleh L., Cremer M., Tashiro S., Cremer T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 2003;160:685–697. PubMed PMC

Wiesmeijer K., Krouwels I.M., Tanke H.J., Dirks R.W. Chromatin movement visualized with photoactivable GFP-labeled histone H4. Differentiation. 2008;76:83–90. PubMed

Williams R.R., Broad S., Sheer D., Ragoussis J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp. Cell Res. 2002;272:163–175. PubMed

Williams R.R., Fisher A.G. Chromosomes, positions please! Nat. Cell Biol. 2003;5:388–390. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...