Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
075834
Wellcome Trust - United Kingdom
075834/04/Z
Wellcome Trust - United Kingdom
PubMed
17698369
PubMed Central
PMC2446407
DOI
10.1016/j.jsb.2007.06.012
PII: S1047-8477(07)00147-5
Knihovny.cz E-zdroje
- MeSH
- DNA sondy MeSH
- HeLa buňky MeSH
- interfáze MeSH
- lidé MeSH
- lidské chromozomy * MeSH
- organizátor jadérka * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy MeSH
It is widely accepted that chromosomes occupy more or less fixed positions in mammalian interphase nucleus. However, relation between large-scale order of chromosome positioning and gene activity remains unclear. We used the model of the human ribosomal genes to address specific aspects of this problem. Ribosomal genes are organized at particular chromosomal sites in clusters termed nucleolus organizer regions (NORs). Only some NORs, called competent are generally accepted to be transcriptionally active during interphase. Importantly in this respect, the regularities in distribution of competent, and non-competent NORs among the specific chromosomes were already established in two human-derived cell lines: transformed HeLa and primary LEP cells. In the present study, using FISH and immunocytochemistry, we found that in HeLa and LEP cells the large-scale positioning of the NOR-bearing chromosomes with regard to nucleoli is linked to the transcription activity of rDNA. Namely, the tendency of rDNA-bearing chromosomes to associate with nucleoli correlates with the number of transcriptionally competent NORs in the respective chromosome homologs. Regarding the position of NORs, we found that not only competent but also most of the non-competent NORs are included in the nucleoli. Some intranucleolar NORs (supposedly non-competent) are situated on elongated chromatin protrusions connecting nucleoli with respective chromosome territories spatially distanced from nucleoli.
Zobrazit více v PubMed
Akhmanova A., Verkerk T., Langeveld A., Grosveld F., Galjart N. Characterisation of transcriptionally active and inactive chromatin domains in neurons. J. Cell Sci. 2000;24:4463–4474. PubMed
Bártová E., Krejčí J., Harničarová A., Kozubek S. Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation. 2007 [Epub ahead of print] PubMed
Baxter J., Merkenschlager M., Fisher A.G. Nuclear organisation and gene expression. Curr. Opin. Cell Biol. 2002;14:372–376. PubMed
Benavente R., Rose K.M., Reimer G., Hugle-Dorr B., Scheer U. Inhibition of nucleolar reformation after microinjection of antibodies to RNA polymerase I into mitotic cells. J. Cell Biol. 1987;105:1483–1491. PubMed PMC
Branco M.R., Pombo A. Chromosome organization: new facts, new models. Trends Cell Biol. 2007;17:127–134. PubMed
Chubb J.R., Bickmore W.A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell. 2003;112:403–406. PubMed
Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2:292–301. PubMed
Cremer T., Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur. J. Histochem. 2006;50:223–272. PubMed
Cremer T., Kurz A., Zirbel R., Dietzel S., Rinke B., Schrock E., Speicher M.R., Mathieu U., Jauch A., Emmerich P., Scherthan H., Ried T., Cremer C., Lichter P. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb. Symp. Quant. Biol. 1993;58:777–792. PubMed
Dousset T., Wang C., Verheggen C., Chen D., Hernandez-Verdun D., Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell. 2000;11:2705–2717. PubMed PMC
Erickson J.M., Rushford C.L., Dorney D.J., Wilson G.N., Schmickel R.D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981;16:1–9. PubMed
Foster H.A., Bridger J.M. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma. 2005;114:212–229. PubMed
Gebrane-Younes J., Fomproix N., Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J. Cell Sci. 1997;110:2429–2440. PubMed
Gilbert N., Ramsahoye B. The relationship between chromatin structure and transcriptional activity in mammalian genomes. Brief Funct. Genomic Proteomic. 2005;4:129–142. PubMed
Harničarová A., Kozubek S., Pacherník J., Krejči J., Bártová E. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp. Cell Res. 2006;312:4019–4035. PubMed
Heliot L., Mongelard F., Klein C., O’Donohue M.F., Chassery J.M., Robert-Nicoud M., Usson Y. Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J. Histochem. Cytochem. 2000;48:13–20. PubMed
Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. PubMed PMC
Jimenez-Garcia L.F., Segura-Valdez M.L., Ochs R.L., Rothblum L.I., Hannan R., Spector D.L. Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol. Biol. Cell. 1994;5:955–966. PubMed PMC
Kaplan F.S., Murray J., Sylvester J.E., Gonzalez I.L., O’Connor J.P., Doering J.L., Muenke M., Emanuel B.S., Zasloff M.A. The topographic organization of repetitive DNA in the human nucleolus. Genomics. 1993;15:123–132. PubMed
Kioussis D. Gene regulation: kissing chromosomes. Nature. 2005;435:579–580. PubMed
Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. PubMed
Macville M., Schrock E., Padilla-Nash H., Keck C., Ghadimi B.M., Zimonjic D., Popescu N., Ried T. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59:141–150. PubMed
Mahy N.L., Perry P.E., Bickmore W.A. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J. Cell Biol. 2002;159:753–763. PubMed PMC
Manders E.M., Kimura H., Cook P.R. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J. Cell Biol. 1999;144:813–821. PubMed PMC
Melese T., Xue Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 1995;7:319–324. PubMed
Morey C., Da Silva N.R., Perry P., Bickmore W.A. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development. 2007;134:909–919. PubMed
Ochs R.L., Lischwe M.A., Shen E., Carroll R.E., Busch H. Nucleologenesis composition and fate of prenucleolar bodies. Chromosoma. 1985;92:330–336. PubMed
O’Sullivan A.C., Sullivan G.J., McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 2002;22:657–668. PubMed PMC
Parada L.A., McQueen P.G., Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5:R44. PubMed PMC
Parada L., Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 2002;12:425–432. PubMed
Parada L.A., Roix J.J., Misteli T. An uncertainty principle in chromosome positioning. Trends Cell Biol. 2003;13:393–396. PubMed
Pederson T. The spatial organization of the genome in mammalian cells. Curr. Opin. Genet. Dev. 2004;14:203–209. PubMed
Pliss A., Koberna K., Večeřová J., Malínský J., Mašata M., Fialová M., Raška I., Berezney R. Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J. Cell. Biochem. 2005;94:554–565. PubMed
Puvion-Dutilleul F., Bachellerie J.P., Puvion E. Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma. 1991;100:395–409. PubMed
Raška I., Shaw P.J., Cmarko D. New insights into nucleolar architecture and activity. Int. Rev. Cytol. 2006;255:177–235. PubMed
Roussel P., Andre C., Comai L., Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 1996;133:235–246. PubMed PMC
Santoro R. The silence of the ribosomal RNA genes. Cell. Mol. Life Sci. 2005;62:2067–2079. PubMed PMC
Scheer U., Hock R. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 1999;11:385–390. PubMed
Smirnov E., Kalmárová M., Koberna K., Zemanová Z., Malínský J., Mašata M., Cvačková Z., Michalová K., Raška I. NORs and their transcription competence during the cell cycle. Folia Biol. 2006;52:59–70. PubMed PMC
Sullivan G.J., Bridger J.M., Cuthbert A.P., Newbold R.F., Bickmore W.A., McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J. 2001;20:2867–2874. PubMed PMC
Sun H.B., Shen J., Yokota H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys. J. 2000;79:184–190. PubMed PMC
Taslerová R., Kozubek S., Bártová E., Gajdušková P., Kodet R., Kozubek M. Localization of genetic elements of intact and derivative chromosome 11 and 22 territories in nuclei of Ewing sarcoma cells. J. Struct. Biol. 2006;155:493–504. PubMed
Vazquez J., Belmont A.S., Sedat J.W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 2001;11:1227–1239. PubMed
Verschure P.J., van Der Kraan I., Manders E.M., van Driel R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol. 1999;147:13–24. PubMed PMC
Visser A.E., Jaunin F., Fakan S., Aten J.A. High resolution analysis of interphase chromosome domains. J. Cell Sci. 2000;113:2585–2593. PubMed
Volpi E.V., Chevret E., Jones T., Vatcheva R., Williamson J., Beck S., Campbell R.D., Goldsworthy M., Powis S.H., Ragoussis J., Trowsdale J., Sheer D. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 2000;113:1565–1576. PubMed
Walter J., Schermelleh L., Cremer M., Tashiro S., Cremer T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 2003;160:685–697. PubMed PMC
Wegel E., Shaw P. Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma. 2005;114:331–337. PubMed
Weisenberger D., Scheer U.A. A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J. Cell Biol. 1995;129:561–575. PubMed PMC
Zink D., Cremer T., Saffrich R., Fischer R., Trendelenburg M.F., Ansorge W., Stelzer E.H. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 1998;10:241–251. PubMed
Nucleolar DNA: the host and the guests
Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis