Asymmetrical distribution of the transcriptionally competent NORs in mitosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
075834
Wellcome Trust - United Kingdom
PubMed
18502146
PubMed Central
PMC2475583
DOI
10.1016/j.jsb.2008.04.002
PII: S1047-8477(08)00104-4
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- chromatidy MeSH
- genetická transkripce MeSH
- lidé MeSH
- mitóza * MeSH
- organizátor jadérka * MeSH
- transkripční iniciační komplex Pol1 - proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transcription factor UBF MeSH Prohlížeč
- transkripční iniciační komplex Pol1 - proteiny MeSH
Ribosomal genes are organized in clusters termed Nucleolus Organizer Regions (NORs). Essential components of the RNA polymerase I transcription machinery, including Upstream Binding Factor (UBF), can be detected on some NORs during mitosis; these NORs, termed competent, are believed to be transcriptionally active during interphase. In cultured mammalian cycling cells, the number of competent NORs, and their distribution among the different chromosomes, does not vary significantly in the sequential cell cycles. In this work we investigate whether this stable state is achieved by equal distribution of competent NORs during cell division. To answer this question we first studied the state of NORs in telophase HeLa and LEP cells. In both cell lines we found a small but significant difference between the emerging daughter cells in the number of UBF-loaded NORs. To reveal the cause of this difference, we followed the fate of individual NOR using HeLa derived cell line stably expressing UBF-GFP. We demonstrated that some NORs in metaphase are "asymmetrical", i.e. they lack the signal of competence on one of the sister chromatids. Regular presence of such NORs can account for the difference in the number of competent NORs obtained by the daughter cells emerging in mitosis.
Zobrazit více v PubMed
Babu K.A., Verma R.S. Structural and functional aspects of nucleolar organizer regions (NORs) of human chromosomes. Int. Rev. Cytol. 1985;94:151–176. PubMed
Dousset T., Wang C., Verheggen C., Chen D., Hernandez-Verdun D., Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell. 2000;11:2705–2717. PubMed PMC
Erickson J.M., Rushford C.L., Dorney D.J., Wilson G.N., Schmickel R.D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981;16:1–9. PubMed
Gebrane-Younes J., Fomproix N., Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J. Cell Sci. 1997;110:2429–2440. PubMed
Grummt, I., 2007. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum. Mol. Genet. 15, 16 Spec No 1: R21–R27. Review. PubMed
Heliot L., Kaplan H., Lucas L., Klein C., Beorchia A., Doco-Fenzy M., Menager M., Thiry M., O’Donohue M.F., Ploton D. Electron tomography of metaphase nucleolar organizer regions: evidence for a twisted-loop organization. Mol. Biol. Cell. 1997;8:2199–2216. PubMed PMC
Heliot L., Mongelard F., Klein C., O’Donohue M.F., Chassery J.M., Robert-Nicoud M., Usson Y. Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J. Histochem. Cytochem. 2000;48:13–20. PubMed
Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. PubMed PMC
Howell W.M., Black D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980;36:1014–1015. PubMed
Jordan P., Mannervik M., Tora L., Carmo-Fonseca M. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell Biol. 1996;133:225–234. PubMed PMC
Kalmárová, M., Smirnov, E., Kováčik, L, Popov, A., Raška, I., in press. Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis. Physiol. Res. 3 (57). PubMed PMC
Leung A.K., Gerlich D., Miller G., Lyon C., Lam Y.W., Lleres D., Daigle N., Zomerdijk J., Ellenberg J., Lamond A.I. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 2004;166:787–800. PubMed PMC
Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. PubMed
Macville M., Schrock E., Padilla-Nash H., Keck C., Ghadimi B.M., Zimonjic D., Popescu N., Ried T. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59:141–150. PubMed
Mais C., Wright J.E., Prieto J.L., Raggett S.L., McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005;19:50–64. PubMed PMC
Moss T. At the crossroads of growth control; making ribosomal RNA. Curr. Opin. Genet. Dev. 2004;14(2):210–217. PubMed
O’Sullivan A.C., Sullivan G.J., McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 2002;22:657–668. PubMed PMC
Prieto J.L., McStay B. Nucleolar biogenesis: the first small steps. Biochem. Soc. Trans. 2005;33:1441–1443. PubMed
Prieto J.L., McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 2007;21:2041–2054. PubMed PMC
Puvion-Dutilleul F., Bachellerie J.P., Puvion E. Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma. 1991;100:395–409. PubMed
Raška I. Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol. 2003;13:517–525. PubMed
Raška I., Shaw P.J., Cmarko D. New insights into nucleolar architecture and activity. Int. Rev. Cytol. 2006;255:177–235. PubMed
Roussel P., Andre C., Comai L., Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 1996;133:235–246. PubMed PMC
Russell J., Zomerdijk J.C. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem. Sci. 2005;30(2):87–96. Review. PubMed PMC
Savino T.M., Gebrane-Younes J., De Mey J., Sibarita J.B., Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J. Cell Biol. 2001;153:1097–1110. PubMed PMC
Sirri V., Roussel P., Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J. Cell Sci. 1999;112:3259–3268. PubMed
Smetana K., Likovský Z., Jirásková I., Čermák J. The asymmetric distribution of interphasic silver-stained nucleolus organizer regions in human and rat proerythroblasts. Folia. Biol. 1999;45:243–247. PubMed
Smirnov E., Kalmárová M., Koberna K., Zemanová Z., Malínský J., Mašata M., Cvačková Z., Michalová K., Raška I. NORs and their transcription competence during the cell cycle. Folia. Biol. 2006;52:59–70. PubMed PMC
Weisenberger D., Scheer U.A. A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J. Cell Biol. 1995;129:561–575. PubMed PMC
Reproduction of the FC/DFC units in nucleoli
Nucleolar DNA: the host and the guests