Human rDNA and Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
Charles University (Progres Q28) and the Grant Agency of Czech Republic (19-21715S)
Grant Agency of Czech Republic and Charles university
PubMed
34943960
PubMed Central
PMC8700125
DOI
10.3390/cells10123452
PII: cells10123452
Knihovny.cz E-zdroje
- Klíčová slova
- IGS, cancer, copy number, human rDNA, non-coding RNA, ribosomal genes,
- MeSH
- genetická variace genetika MeSH
- intergenová DNA genetika MeSH
- lidé MeSH
- mutace genetika MeSH
- nádory genetika patologie MeSH
- nekódující RNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- intergenová DNA MeSH
- nekódující RNA MeSH
- ribozomální DNA MeSH
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
Zobrazit více v PubMed
Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. doi: 10.1073/pnas.69.11.3394. PubMed DOI PMC
Smirnov E., Chmurciakova N., Liska F., Bazantova P., Cmarko D. Variability of Human rDNA. Cells. 2021;10:196. doi: 10.3390/cells10020196. PubMed DOI PMC
Smirnov E., Cmarko D., Mazel T., Hornacek M., Raska I. Nucleolar DNA: The host and the guests. Histochem. Cell Biol. 2016;145:359–372. doi: 10.1007/s00418-016-1407-x. PubMed DOI
Puvion-Dutilleul F., Bachellerie J.P., Puvion E. Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma. 1991;100:395–409. doi: 10.1007/BF00337518. PubMed DOI
Sirri V., Urcuqui-Inchima S., Roussel P., Hernandez-Verdun D. Nucleolus: The fascinating nuclear body. Histochem. Cell Biol. 2008;129:13–31. doi: 10.1007/s00418-007-0359-6. PubMed DOI PMC
Sherr C.J. Divorcing ARF and p53: An unsettled case. Nat. Rev. Cancer. 2006;6:663–673. doi: 10.1038/nrc1954. PubMed DOI
Quin J.E., Devlin J.R., Cameron D., Hannan K.M., Pearson R.B., Hannan R.D. Targeting the nucleolus for cancer intervention. Biochim. Biophys. Acta. 2014;1842:802–816. doi: 10.1016/j.bbadis.2013.12.009. PubMed DOI
Correll C.C., Bartek J., Dundr M. The Nucleolus: A Multiphase Condensate Balancing Ribosome Synthesis and Translational Capacity in Health, Aging and Ribosomopathies. Cells. 2019;8:869. doi: 10.3390/cells8080869. PubMed DOI PMC
Derenzini M., Montanaro L., Trere D. What the nucleolus says to a tumour pathologist. Histopathology. 2009;54:753–762. doi: 10.1111/j.1365-2559.2008.03168.x. PubMed DOI
Chin K., de Solorzano C.O., Knowles D., Jones A., Chou W., Rodriguez E.G., Kuo W.L., Ljung B.M., Chew K., Myambo K., et al. In situ analyses of genome instability in breast cancer. Nat. Genet. 2004;36:984–988. doi: 10.1038/ng1409. PubMed DOI
Wolfgramm E.D., Alves L.N.R., Stur E., Tovar T.T., Sartori M.P.D., Neto A.K.D., Louro I.D. Analysis of genome instability in breast cancer. Mol. Biol. Rep. 2013;40:2139–2144. doi: 10.1007/s11033-012-2272-x. PubMed DOI
Derenzini M., Trere D., Pession A., Montanaro L., Sirri V., Ochs R.L. Nucleolar function and size in cancer cells. Am. J. Pathol. 1998;152:1291–1297. PubMed PMC
Williamson D., Lu Y.J., Fang C., Pritchard-Jones K., Shipley J. Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer. 2006;45:839–845. doi: 10.1002/gcc.20347. PubMed DOI
Uemura M., Zheng Q., Koh C.M., Nelson W.G., Yegnasubramanian S., De Marzo A.M. Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene. 2012;31:1254–1263. doi: 10.1038/onc.2011.319. PubMed DOI PMC
Xu B.S., Li H., Perry J.M., Singh V.P., Unruh J., Yu Z.L., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC
Guerra-Rebollo M., Mateo F., Franke K., Huen M.S.Y., Lopitz-Otsoa F., Rodriguez M.S., Plans V., Thomson T.M. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage. Exp. Cell Res. 2012;318:2365–2376. doi: 10.1016/j.yexcr.2012.07.003. PubMed DOI
Rubbi C.P., Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22:6068–6077. doi: 10.1093/emboj/cdg579. PubMed DOI PMC
Kobayashi T. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol. Life Sci. 2011;68:1395–1403. doi: 10.1007/s00018-010-0613-2. PubMed DOI PMC
Montanaro L., Trere D., Derenzini M. Nucleolus, ribosomes, and cancer. Am. J. Pathol. 2008;173:301–310. doi: 10.2353/ajpath.2008.070752. PubMed DOI PMC
Lu Y.J., Chang Q.S., Zhang Y.D., Beezhold K., Rojanasakul Y., Zhao H.W., Castranova V., Shi X., Chen F. Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle. 2009;8:2101–2109. doi: 10.4161/cc.8.13.8927. PubMed DOI
Stults D.M., Killen M.W., Williamson E.P., Hourigan J.S., Vargas H.D., Arnold S.M., Moscow J.A., Pierce A.J. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res. 2009;69:9096–9104. doi: 10.1158/0008-5472.CAN-09-2680. PubMed DOI
Stepinski D. The nucleolus, an ally, and an enemy of cancer cells. Histochem. Cell Biol. 2018;150:607–629. doi: 10.1007/s00418-018-1706-5. PubMed DOI PMC
Warmerdam D.O., Wolthuis R.M.F. Keeping ribosomal DNA intact: A repeating challenge. Chromosome Res. 2019;27:57–72. doi: 10.1007/s10577-018-9594-z. PubMed DOI PMC
Voit R., Schafer K., Grummt I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol. Cell. Biol. 1997;17:4230–4237. doi: 10.1128/MCB.17.8.4230. PubMed DOI PMC
Voit R., Hoffmann M., Grummt I. Phosphorylation by G(1)-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 1999;18:1891–1899. doi: 10.1093/emboj/18.7.1891. PubMed DOI PMC
Bywater M.J., Poortinga G., Sanij E., Hein N., Peck A., Cullinane C., Wall M., Cluse L., Drygin D., Anderes K., et al. Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53. Cancer Cell. 2012;22:51–65. doi: 10.1016/j.ccr.2012.05.019. PubMed DOI PMC
Burger K., Muhl B., Harasim T., Rohrmoser M., Malamoussi A., Orban M., Kellner M., Gruber-Eber A., Kremmer E., Hölzel M., et al. Chemotherapeutic Drugs Inhibit Ribosome Biogenesis at Various Levels. J. Biol. Chem. 2010;285:12416–12425. doi: 10.1074/jbc.M109.074211. PubMed DOI PMC
Dang C.V. MYC on the Path to Cancer. Cell. 2012;149:22–35. doi: 10.1016/j.cell.2012.03.003. PubMed DOI PMC
Grandori C., Gomez-Roman N., Felton-Edkins Z.A., Ngouenet C., Galloway D.A., Eisenman R.N., White R.J. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 2005;7:311–318. doi: 10.1038/ncb1224. PubMed DOI
Nemeth A., Langst G. Genome organization in and around the nucleolus. Trends Genet. 2011;27:149–156. doi: 10.1016/j.tig.2011.01.002. PubMed DOI
Arabi A., Wu S.Q., Ridderstrale K., Bierhoff H., Shiue C., Fatyol K., Fahlén S., Hydbring P., Söderberg O., Grummt I., et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 2005;7:303–310. doi: 10.1038/ncb1225. PubMed DOI
Shiue C.N., Berkson R.G., Wright A.P.H. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene. 2009;28:1833–1842. doi: 10.1038/onc.2009.21. PubMed DOI
Poortinga G., Wall M., Sanij E., Siwicki K., Ellul J., Brown D., Holloway T.P., Hannan R.D., McArthur G.A. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res. 2011;39:3267–3281. doi: 10.1093/nar/gkq1205. PubMed DOI PMC
Petitjean A., Mathe E., Kato S., Ishioka C., Tavtigian S.V., Hainaut P., Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007;28:622–629. doi: 10.1002/humu.20495. PubMed DOI
Budde A., Grummt I. p53 represses ribosomal gene transcription. Oncogene. 1999;18:1119–1124. doi: 10.1038/sj.onc.1202402. PubMed DOI
Zhai W.G., Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 2000;20:5930–5938. doi: 10.1128/MCB.20.16.5930-5938.2000. PubMed DOI PMC
Sherr C.J., McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–112. doi: 10.1016/S1535-6108(02)00102-2. PubMed DOI
Ho J.S.L., Ma W.L., Mao D.Y.L., Benchimol S. p53-dependent transcriptional repression of c-myc is required for G(1) cell cycle arrest. Mol. Cell. Biol. 2005;25:7423–7431. doi: 10.1128/MCB.25.17.7423-7431.2005. PubMed DOI PMC
Di Fiore R., D’Anneo A., Tesoriere G., Vento R. RB1 in cancer: Different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J. Cell Physiol. 2013;228:1676–1687. doi: 10.1002/jcp.24329. PubMed DOI
Cui C.H., Elsam T., Tian Q.J., Seykora J.T., Grachtchouk M., Dlugosz A., Tseng H. Gli proteins up-regulate the expression of basonuclin in basal cell carcinoma. Cancer Res. 2004;64:5651–5658. doi: 10.1158/0008-5472.CAN-04-0801. PubMed DOI
Zhou H., Wang Y.P., Lv Q.Y., Zhang J., Wang Q., Gao F., Hou H., Zhang H., Zhang W., Li L. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation. PLoS ONE. 2016;11:e0163340. PubMed PMC
Shao F.Q., Liu X.Q., Zhang X.Z., Wang Q., Wang W.C. Methylation of 45S Ribosomal DNA (rDNA) Is Associated with Cancer and Aging in Humans. Int. J. Genomics. 2021;2021:8818007. doi: 10.1155/2021/8818007. PubMed DOI PMC
Wang M., Lemos B. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res. 2019;29:325–333. doi: 10.1101/gr.241745.118. PubMed DOI PMC
Symonova R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes. 2019;10:345. doi: 10.3390/genes10050345. PubMed DOI PMC
Chan M.W.Y., Wei S.H., Wen P., Wang Z.L., Matei D.E., Liu J.C., Liyanarachchi S., Brown R., Nephew K.P., Yan P.S., et al. Hypermethylation of 18S and 28S ribosomal DNAs predicts progression-free survival in patients with ovarian cancer. Clin. Cancer Res. 2005;11:7376–7383. doi: 10.1158/1078-0432.CCR-05-1100. PubMed DOI
Machwe A., Orren D.K., Bohr V.A. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J. 2000;14:1715–1724. doi: 10.1096/fj.99-0926com. PubMed DOI
D’Aquila P., Montesanto A., Mandala M., Garasto S., Mari V., Corsonello A., Bellizzi D., Passarino G. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. Aging Cell. 2017;16:966–975. doi: 10.1111/acel.12603. PubMed DOI PMC
Zillner K., Komatsu J., Filarsky K., Kalepu R., Bensimon A., Nemeth A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics. 2015;7:363–378. doi: 10.2217/epi.14.93. PubMed DOI
Jjingo D., Conley A.B., Yi S.V., Lunyak V.V., Jordan I.K. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3:462–474. doi: 10.18632/oncotarget.497. PubMed DOI PMC
Yen P.S., Rodriguez F.J., Laux D.E., Perry M.R., Standiford S.B., Huang T.M. Hypermethylation of ribosomal DNA in human breast carcinoma. Br. J. Cancer. 2000;82:514–517. doi: 10.1054/bjoc.1999.0955. PubMed DOI PMC
Powell M.A., Mutch D.G., Rader J.S., Herzog T.J., Huang T.H.M., Goodfellow P.J. Ribosomal DNA methylation in patients with endometrial carcinoma—An independent prognostic marker. Cancer-Am. Cancer Soc. 2002;94:2941–2952. PubMed
Ghoshal K., Majumder S., Datta J., Motiwala T., Bai S., Sharma S.M., Frankel W., Jacob S.T. Role of human ribosomal RNA (rRNA) promoter methylation and of Methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J. Biol. Chem. 2004;279:6783–6793. doi: 10.1074/jbc.M309393200. PubMed DOI PMC
Zhang X., Fang H., Zhang W., Zhong B., Li Y., Wang X. Ribosomal DNA methylation as stable biomarkers for detection of cancer in plasma. bioRxiv. 2019
Ha S.S., Zhou H., Gautam M., Song Y.L., Wang C.N. Reduced ribosomal RNA expression and unchanged ribosomal DNA promoter methylation in oral squamous cell carcinoma. Mol. Genet. Genom. Med. 2019;7:e00783. doi: 10.1002/mgg3.783. PubMed DOI PMC
Malinovskaya E.M., Ershova E.S., Golimbet V.E., Porokhovnik L.N., Lyapunova N.A., Kutsev S.I., Veiko N.N., Kostyuk S.V. Copy Number of Human Ribosomal Genes With Aging: Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group. Front. Genet. 2018;9:306. doi: 10.3389/fgene.2018.00306. PubMed DOI PMC
Paredes S., Angulo-Ibanez M., Tasselli L., Carlson S.M., Zheng W., Li T.M., Chua K.F. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J. Biol. Chem. 2018;293:11242–11250. doi: 10.1074/jbc.AC118.003325. PubMed DOI PMC
Wiese C., Pierce A.J., Gauny S.S., Jasin M., Kronenberg A. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L) Cancer Res. 2002;62:1279–1283. PubMed
Tchurikov N.A., Kravatsky Y.V., Kretova O.V. Link Between Double-Strand DNA Break Hotspots and Transcription Regulation: Forum Domains-50-250 kb Chromosome Regions Containing Coordinately Expressed Genes. Biochemistry. 2018;83:437–449. doi: 10.1134/S0006297918040144. PubMed DOI
Valori V., Tus K., Laukaitis C., Harris D.T., LeBeau L., Maggert K.A. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics. 2020;15:85–106. doi: 10.1080/15592294.2019.1649930. PubMed DOI PMC
Tchurikov N.A., Uroshlev L.A., Klushevskaya E.S., Alembekov I.R., Lagarkova M.A., Kravatskaya G.I., Makeev V.Y., Kravatsky Y.V. Chromosomal Translocations in NK-Cell Lymphomas Originate from Inter-Chromosomal Contacts of Active rDNA Clusters Possessing Hot Spots of DSBs. Cancers. 2021;13:3889. doi: 10.3390/cancers13153889. PubMed DOI PMC
Tchurikov N.A., Kretova O.V., Fedoseeva D.M., Chechetkin V.R., Gorbacheva M.A., Snezhkina A.V., Alembekov I.R., Kravatskaya G.I., Kravatsky Y.V. Genome-wide mapping of hot spots of DNA double-strand breaks in human cells as a tool for epigenetic studies and cancer genomics. Genom. Data. 2015;5:89–93. doi: 10.1016/j.gdata.2015.05.018. PubMed DOI PMC
van Sluis M., McStay B. Nucleolar reorganization in response to rDNA damage. Curr. Opin. Cell Biol. 2017;46:81–86. doi: 10.1016/j.ceb.2017.03.004. PubMed DOI
Chen Y.W., Hu X.T., Liang A.C., Au W.Y., So C.C., Wong M.L., Shen L., Tao Q., Chu K.M., Kwong Y.L., et al. High BCL6 expression predicts better prognosis, independent of BCL6 translocation status, translocation partner, or BCL6-deregulating mutations, in gastric lymphoma. Blood. 2006;108:2373–2383. doi: 10.1182/blood-2006-05-022517. PubMed DOI
Kobayashi S., Taki T., Nagoshi H., Chinen Y., Yokokawa Y., Kanegane H., Matsumoto Y., Kuroda J., Horiike S., Nishida K., et al. Identification of novel fusion genes with 28S ribosomal DNA in hematologic malignancies. Int. J. Oncol. 2014;44:1193–1198. doi: 10.3892/ijo.2014.2291. PubMed DOI
Bintu L., Yong J., Antebi Y.E., McCue K., Kazuki Y., Uno N., Oshimura M., Elowitz M.B. Dynamics of epigenetic regulation at the single-cell level. Science. 2016;351:720–724. doi: 10.1126/science.aab2956. PubMed DOI PMC
Damelin M., Bestor T.H. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol. Cell. Biol. 2007;27:3891–3899. doi: 10.1128/MCB.00036-07. PubMed DOI PMC
Shiao Y.H., Lupascu S.T., Gu Y.D., Kasprzak W., Hwang C.J., Fields J.R., Leighty R.M., Quiñones O., Shapiro B.A., Alvord W.G., et al. An Intergenic Non-Coding rRNA Correlated with Expression of the rRNA and Frequency of an rRNA Single Nucleotide Polymorphism in Lung Cancer Cells. PLoS ONE. 2009;4:e7505. doi: 10.1371/journal.pone.0007505. PubMed DOI PMC
Ohashi R., Umezu H., Sato A., Abé T., Kondo S., Daigo K., Sato S., Hara N., Miyashita A., Ikeuchi T., et al. Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells. 2020;9:2409. doi: 10.3390/cells9112409. PubMed DOI PMC
Diesch J., Hannan R.D., Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci. 2014;4:43. doi: 10.1186/2045-3701-4-43. PubMed DOI PMC
Nakhoul H., Ke J., Zhou X., Liao W., Zeng S.X., Lu H. Ribosomopathies: Mechanisms of disease. Clin. Med. Insights Blood Disord. 2014;7:7–16. doi: 10.4137/CMBD.S16952. PubMed DOI PMC
Goudarzi K.M., Lindstrom M.S. Role of ribosomal protein mutations in tumor development (Review) Int. J. Oncol. 2016;48:1313–1324. doi: 10.3892/ijo.2016.3387. PubMed DOI PMC
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Ide S., Miyazaki T., Maki H., Kobayashi T. Abundance of Ribosomal RNA Gene Copies Maintains Genome Integrity. Science. 2010;327:693–696. doi: 10.1126/science.1179044. PubMed DOI
Malone J.H. Balancing copy number in ribosomal DNA. Proc. Natl. Acad. Sci. USA. 2015;112:2635–2636. doi: 10.1073/pnas.1500054112. PubMed DOI PMC
Katzenberg D.R., Tilley S.A., Birshtein B.K. Nucleotide-Sequence of an Unequal Sister Chromatid Exchange Site in a Mouse Myeloma Cell-Line. Mol. Cell. Biol. 1989;9:1324–1326. PubMed PMC
Udugama M., Sanij E., Voon H.P.J., Son J., Hii L., Henson J.D., Chan F.L., Chang F.T., Liu Y., Pearson R.B., et al. Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proc. Natl. Acad. Sci. USA. 2018;115:4737–4742. doi: 10.1073/pnas.1720391115. PubMed DOI PMC
Salim D., Bradford W.D., Freeland A., Cady G., Wang J., Pruitt S.C., Gerton J.L. DNA replication stress restricts ribosomal DNA copy number. PLoS Genet. 2017;13:e1007006. doi: 10.1371/journal.pgen.1007006. PubMed DOI PMC
Strehler B.L. Genetic Instability as the Primary Cause of Human Aging. Exp. Gerontol. 1986;21:283–319. doi: 10.1016/0531-5565(86)90038-0. PubMed DOI
Tiku V., Jain C., Raz Y., Nakamura S., Heestand B., Liu W., Späth M., Suchiman H.E.D., Müller R.U., Slagboom P.E., et al. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 2017;8:16083. doi: 10.1038/ncomms16083. PubMed DOI PMC
Boyd L.J., Livingston J.S., Brown M.G., Lawce H.J., Gilhooly J.T., Wildin R.S., Linck L.M., Magenis R.E., Pillers D.A.M. Meiotic exchange event within the stalk region of an inverted chromosome 22 results in a recombinant chromosome with duplication of the distal long arm. Am. J. Med. Genet. Part A. 2005;138:355–360. doi: 10.1002/ajmg.a.30895. PubMed DOI
Hosgood H.D., Hu W., Rothman N., Klugman M., Weinstein S.J., Virtamo J.R., Albanes D., Cawthon R., Lan Q. Variation in ribosomal DNA copy number is associated with lung cancer risk in a prospective cohort study. Carcinogenesis. 2019;40:975–978. doi: 10.1093/carcin/bgz052. PubMed DOI PMC
Paredes S., Maggert K.A. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sci. USA. 2009;106:17829–17834. doi: 10.1073/pnas.0906811106. PubMed DOI PMC
Wang M., Lemos B. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet. 2017;13:e1006994. doi: 10.1371/journal.pgen.1006994. PubMed DOI PMC
Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI
Wei H.B., Zhou B., Zhang F., Tu Y.Y., Hu Y.N., Zhang B.G., Zhai Q. Profiling and Identification of Small rDNA-Derived RNAs and Their Potential Biological Functions. PLoS ONE. 2013;8:e56842. doi: 10.1371/journal.pone.0056842. PubMed DOI PMC
Lambert M., Benmoussa A., Provost P. Small Non-Coding RNAs Derived from Eukaryotic Ribosomal RNA. Non-Coding RNA. 2019;5:16. doi: 10.3390/ncrna5010016. PubMed DOI PMC
Li S. Human 28s rRNA 5′ terminal derived small RNA inhibits ribosomal protein mRNA levels. bioRxiv. 2019
McCool M.A., Bryant C.J., Baserga S.J. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem. Soc. Trans. 2020;48:595–612. doi: 10.1042/BST20190854. PubMed DOI PMC
Politz J.C.R., Hogan E.M., Pederson T. MicroRNAs with a nucleolar location. RNA. 2009;15:1705–1715. doi: 10.1261/rna.1470409. PubMed DOI PMC
Chak L.L., Mohammed J., Lai E.C., Tucker-Kellogg G., Okamura K. A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. RNA. 2015;21:375–384. doi: 10.1261/rna.049098.114. PubMed DOI PMC
Yoshikawa M., Fujii Y.R. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BioMed Res. Int. 2016;2016:7562085. doi: 10.1155/2016/7562085. PubMed DOI PMC
Sadova A.A., Kupriyanova N.S., Pavlova G.V. Mapping and Quantification of Non-Coding RNA Originating from the rDNA in Human Glioma Cells. Cancers. 2020;12:2090. doi: 10.3390/cancers12082090. PubMed DOI PMC
Lovat F., Fassan M., Gasparini P., Rizzotto L., Cascione L., Pizzi M., Vicentini C., Balatti V., Palmieri D., Costinean S., et al. miR-15b/16-2 deletion promotes B-cell malignancies. Proc. Natl. Acad. Sci. USA. 2015;112:11636–11641. doi: 10.1073/pnas.1514954112. PubMed DOI PMC
Catalanotto C., Cogoni C., Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016;17:1712. doi: 10.3390/ijms17101712. PubMed DOI PMC
Fawzy I.O., Hamza M.T., Hosny K.A., Esmat G., El Tayebi H.M., Abdelaziz A.I. miR-1275: A single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett. 2015;589:2257–2265. doi: 10.1016/j.febslet.2015.06.038. PubMed DOI
Matamala N., Vargas M.T., Gonzalez-Campora R., Minambres R., Arias J.I., Menendez P., Andres-Leon E., Gomez-Lopez G., Yanowsky K., Calvete-Candenas J., et al. Tumor MicroRNA Expression Profiling Identifies Circulating MicroRNAs for Early Breast Cancer Detection. Clin. Chem. 2015;61:1098–1106. doi: 10.1373/clinchem.2015.238691. PubMed DOI
Zang W.Q., Wang Y.Y., Wang T., Du Y.W., Chen X.N., Li M., Zhao G. miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer. Mol. Cancer. 2015;14:37. doi: 10.1186/s12943-015-0315-3. PubMed DOI PMC
Son D.J., Kumar S., Takabe W., Kim C.W., Ni C.W., Alberts-Grill N., Jang I.H., Kim S., Kim W., Kang S.W., et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun. 2013;4:3000. doi: 10.1038/ncomms4000. PubMed DOI PMC
Starczynowski D.T., Kuchenbauer F., Argiropoulos B., Sung S., Morin R., Muranyi A., Hirst M., Hogge D., Marra M., Wells R.A., et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat. Med. 2010;16:49–58. doi: 10.1038/nm.2054. PubMed DOI
Alkhatabi H.A., McLornan D.P., Kulasekararaj A.G., Malik F., Seidl T., Darling D., Gaken J., Mufti G.J. RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis. Oncotarget. 2016;7:47875–47890. doi: 10.18632/oncotarget.10293. PubMed DOI PMC
Lee H.C., Chang S.S., Choudhary S., Aalto A.P., Maiti M., Bamford D.H., Liu Y. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature. 2009;459:274–277. doi: 10.1038/nature08041. PubMed DOI PMC
Zhou X.F., Chen X.Y., Wang Y., Feng X.Z., Guang S.H. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol. 2017;14:1492–1498. doi: 10.1080/15476286.2017.1341034. PubMed DOI PMC
Elbarbary R.A., Takaku H., Uchiumi N., Tamiya H., Abe M., Takahashi M., Nishida H., Nashimoto M. Modulation of Gene Expression by Human Cytosolic tRNase Z(L) through 5 ‘-Half-tRNA. PLoS ONE. 2009;4:e5908. doi: 10.1371/journal.pone.0005908. PubMed DOI PMC
Wei W., Ba Z., Gao M., Wu Y., Ma Y., Amiard S., White C.I., Danielsen J.M.R., Yang Y.G., Qi Y. A role for small RNAs in DNA double-strand break repair. Cell. 2012;149:101–112. doi: 10.1016/j.cell.2012.03.002. PubMed DOI
Miki D., Zhu P.Y., Zhang W.C., Mao Y.F., Feng Z.Y., Huang H., Zhang H., Li Y., Liu R., Zhang H., et al. Efficient Generation of diRNAs Requires Components in the Posttranscriptional Gene Silencing Pathway. Sci. Rep. 2017;7:301. doi: 10.1038/s41598-017-00374-7. PubMed DOI PMC
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC
Wehner S., Dörrich A.K., Ciba P., Wilde A., Marz M. pRNA: NoRC-associated RNA of rRNA operons. RNA Biol. 2014;11:3–9. doi: 10.4161/rna.27448. PubMed DOI PMC
Bierhoff H., Schmitz K., Maass F., Ye J., Grummt I. Noncoding Transcripts in Sense and Antisense Orientation Regulate the Epigenetic State of Ribosomal RNA Genes. Cold. Spring Harb. Symp. Quant. Biol. 2010;75:357–364. doi: 10.1101/sqb.2010.75.060. PubMed DOI
Leone S., Bär D., Slabber C.F., Dalcher D., Santoro R. The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Rep. 2017;18:1248–1262. doi: 10.15252/embr.201744330. PubMed DOI PMC
Schmitz K.M., Mayer C., Postepska A., Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24:2264–2269. doi: 10.1101/gad.590910. PubMed DOI PMC
Postepska-Igielska A., Krunic D., Schmitt N., Greulich-Bode K.M., Boukamp P., Grummt I. The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep. 2013;14:704–710. doi: 10.1038/embor.2013.87. PubMed DOI PMC
Hao Q.Y., Prasanth K.V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm Genome. 2021 doi: 10.1007/s00335-021-09906-z. PubMed DOI PMC
Bierhoff H., Dammert M.A., Brocks D., Dambacher S., Schotta G., Grummt I. Quiescence-Induced LncRNAs Trigger H4K20 Trimethylation and Transcriptional Silencing. Mol. Cell. 2014;54:675–682. doi: 10.1016/j.molcel.2014.03.032. PubMed DOI
Zhao Z.L., Senturk N., Song C.L., Grummt I. lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Gene. Dev. 2018;32:836–848. doi: 10.1101/gad.311688.118. PubMed DOI PMC
Kong Y., Geng C.Z., Dong Q. LncRNA PAPAS may promote triple-negative breast cancer by downregulating miR-34a. J. Int. Med. Res. 2019;47:3709–3718. doi: 10.1177/0300060519850724. PubMed DOI PMC
Abraham K.J., Khosraviani N., Chan J.N.Y., Gorthi A., Samman A., Zhao D.R.Y., Wang M., Bokros M., Vidya E., Ostrowski L.A., et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585:298–302. doi: 10.1038/s41586-020-2497-0. PubMed DOI PMC
Drygin D., Siddiqui-Jain A., O’Brien S., Schwaebe M., Lin A., Bliesath J., Ho C.B., Proffitt C., Trent K., Whitten J.P., et al. Anticancer Activity of CX-3543: A Direct Inhibitor of rRNA Biogenesis. Cancer Res. 2009;69:7653–7661. doi: 10.1158/0008-5472.CAN-09-1304. PubMed DOI
Audas T.E., Jacob M.D., Lee S. Immobilization of Proteins in the Nucleolus by Ribosomal Intergenic Spacer Noncoding RNA. Mol. Cell. 2012;45:147–157. doi: 10.1016/j.molcel.2011.12.012. PubMed DOI
Yap K., Mukhina S., Zhang G., Tan J.S.C., Ong H.S., Makeyev E.V. A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival. Mol. Cell. 2018;72:525–5540. doi: 10.1016/j.molcel.2018.08.041. PubMed DOI PMC
Gonzalez I.L., Petersen R., Sylvester J.E. Independent Insertion of Alu Elements in the Human Ribosomal Spacer and Their Concerted Evolution. Mol. Biol. Evol. 1989;6:413–423. PubMed
Kupriyanova N.S., Netchvolodov K.K., Sadova A.A., Cherepanova M.D., Ryskov A.P. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning. Gene. 2015;572:237–242. doi: 10.1016/j.gene.2015.07.019. PubMed DOI
Sen S.K., Han K.D., Wang J.X., Lee J., Wang H., Callinan P.A., Dyer M., Cordaux R., Liang P., Batzer M.A. Human genomic deletions mediated by recombination between Alu elements. Am. J. Hum. Genet. 2006;79:41–53. doi: 10.1086/504600. PubMed DOI PMC
O’Neil J., Tchinda J., Gutierrez A., Moreau L., Maser R.S., Wong K.K., Li W., McKenna K., Liu X.S., Feng B., et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J. Exp. Med. 2007;204:3059–3066. doi: 10.1084/jem.20071637. PubMed DOI PMC
Franke G., Bausch B., Hoffmann M.M., Cybulla M., Wilhelm C., Kohlhase J., Scherer G., Neumann H.P. Alu-Alu Recombination Underlies the Vast Majority of Large VHL Germline Deletions: Molecular Characterization and Genotype-Phenotype Correlations in VHL Patients. Hum. Mutat. 2009;30:776–786. doi: 10.1002/humu.20948. PubMed DOI
Teugels E., De Greve J. About the c.156_157insAlu BRCA2 breast cancer predisposing mutation. Breast Cancer Res. Treat. 2009;116:621–622. doi: 10.1007/s10549-008-0188-x. PubMed DOI
Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin. Cancer Biol. 2010;20:200–210. doi: 10.1016/j.semcancer.2010.06.001. PubMed DOI PMC
Zhang W.S., Edwards A., Fan W., Deininger P., Zhang K. Alu distribution and mutation types of cancer genes. BMC Genom. 2011;12:157. doi: 10.1186/1471-2164-12-157. PubMed DOI PMC
Ivanova E., Berger A., Scherrer A., Alkalaeva E., Strub K. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Nucleic Acids Res. 2015;43:2874–2887. doi: 10.1093/nar/gkv048. PubMed DOI PMC
Caudron-Herger M., Pankert T., Seiler J., Nemeth A., Voit R., Grummt I., Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015;34:2758–2774. doi: 10.15252/embj.201591458. PubMed DOI PMC
Zhang X.O., Gingeras T.R., Weng Z. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res. 2019;29:1402–1414. doi: 10.1101/gr.249789.119. PubMed DOI PMC
Gonzalez I.L., Sylvester J.E. Complete Sequence of the 43-Kb Human Ribosomal DNA Repeat—Analysis of the Intergenic Spacer. Genomics. 1995;27:320–328. doi: 10.1006/geno.1995.1049. PubMed DOI
Xin Y.F., Ning S.L., Zhang L., Cui M. CDC27 Facilitates Gastric Cancer Cell Proliferation, Invasion and Metastasis via Twist-Induced Epithelial-Mesenchymal Transition. Cell Physiol. Biochem. 2018;50:501–511. doi: 10.1159/000494164. PubMed DOI
Treiber D.K., Zhai X.Q., Jantzen H.M., Essigmann J.M. Cisplatin-DNA Adducts Are Molecular Decoys for the Ribosomal-Rna Transcription Factor Hubf (Human Upstream Binding-Factor) Proc. Natl. Acad. Sci. USA. 1994;91:5672–5676. doi: 10.1073/pnas.91.12.5672. PubMed DOI PMC
Pondarre C., Strumberg D., Fujimori A., TorresLeon R., Pommier Y. In vivo sequencing of camptothecin-induced topoisomerase I cleavage sites in human colon carcinoma cells. Nucleic Acids Res. 1997;25:4111–4116. doi: 10.1093/nar/25.20.4111. PubMed DOI PMC
Kalita K., Makonchuk D., Gomes C., Zheng J.J., Hetman M. Inhibition of nucleolar transcription as a trigger for neuronal apoptosis. J. Neurochem. 2008;105:2286–2299. doi: 10.1111/j.1471-4159.2008.05316.x. PubMed DOI PMC
Harold C.M., Buhagiar A.F., Cheng Y., Baserga S.J. Ribosomal RNA Transcription Regulation in Breast Cancer. Genes. 2021;12:502. doi: 10.3390/genes12040502. PubMed DOI PMC
Drygin D., Lin A., Bliesath J., Ho C.B., O’Brien S.E., Proffitt C., Omori M., Haddach M., Schwaebe M.K., Siddiqui-Jain A., et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 2011;71:1418–1430. doi: 10.1158/0008-5472.CAN-10-1728. PubMed DOI
Xu H., Di Antonio M., McKinney S., Mathew V., Ho B., O’Neil N.J., Dos Santos N., Silvester J., Wei V., Garcia J., et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 2017;8:14432. doi: 10.1038/ncomms14432. PubMed DOI PMC
Pan M., Wright W.C., Chapple R.H., Zubair A., Sandhu M., Batchelder J.E., Low J., Blankenship K., Wang L., Gordon B., et al. The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nat. Commun. 2021;12:6468. doi: 10.1038/s41467-021-26640-x. PubMed DOI PMC
Sanij E., Hannan K.M., Xuan J., Yan S., Ahern J.E., Trigos A.S., Brajanovski N., Son J., Chan K.T., Kondrashova O., et al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat. Commun. 2020;11:2641. doi: 10.1038/s41467-020-16393-4. PubMed DOI PMC
Jacobs R.Q., Huffines A.K., Laiho M., Schneider D.A. The small molecule BMH-21 directly inhibits transcription elongation and DNA occupancy of RNA polymerase I in vivo and in vitro. J. Biol. Chem. 2021:101450. doi: 10.1016/j.jbc.2021.101450. PubMed DOI PMC
Tsoi H., Lam K.C., Dong Y., Zhang X., Lee C.K., Zhang J., Ng S.C., Ng S.S.M., Zheng S., Chen Y., et al. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients. Oncogene. 2017;36:6109–6118. doi: 10.1038/onc.2017.86. PubMed DOI PMC
Non-canonical DNA structures in the human ribosomal DNA
Variability of Human rDNA and Transcription Activity of the Ribosomal Genes