Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31067804
PubMed Central
PMC6562748
DOI
10.3390/genes10050345
PII: genes10050345
Knihovny.cz E-zdroje
- Klíčová slova
- GC-content, nuclear rDNA, nucleolus, rRNA, secondary structure,
- MeSH
- buněčné jadérko genetika MeSH
- Eukaryota genetika MeSH
- fylogeneze MeSH
- genom MeSH
- lidé MeSH
- molekulární evoluce MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální genetika MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ribozomální DNA MeSH
- RNA ribozomální MeSH
Nuclear ribosomal RNA (rRNA) genes represent the oldest repetitive fraction universal to all eukaryotic genomes. Their deeply anchored universality and omnipresence during eukaryotic evolution reflects in multiple roles and functions reaching far beyond ribosomal synthesis. Merely the copy number of non-transcribed rRNA genes is involved in mechanisms governing e.g. maintenance of genome integrity and control of cellular aging. Their copy number can vary in response to environmental cues, in cellular stress sensing, in development of cancer and other diseases. While reaching hundreds of copies in humans, there are records of up to 20,000 copies in fish and frogs and even 400,000 copies in ciliates forming thus a literal subgenome or an rDNAome within the genome. From the compositional and evolutionary dynamics viewpoint, the precursor 45S rDNA represents universally GC-enriched, highly recombining and homogenized regions. Hence, it is not accidental that both rDNA sequence and the corresponding rRNA secondary structure belong to established phylogenetic markers broadly used to infer phylogeny on multiple taxonomical levels including species delimitation. However, these multiple roles of rDNAs have been treated and discussed as being separate and independent from each other. Here, I aim to address nuclear rDNAs in an integrative approach to better assess the complexity of rDNA importance in the evolutionary context.
Zobrazit více v PubMed
Bernhardt H.S., Tate W.P. A Ribosome Without RNA. Front. Ecol. Evol. 2015;3:1–6. doi: 10.3389/fevo.2015.00129. DOI
Boisvert F.-M., van Koningsbruggen S., Navascués J., Lamond A.I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007;8:574–585. doi: 10.1038/nrm2184. PubMed DOI
Porokhovnik L., Gerton J.L. Ribosomal DNA-connecting ribosome biogenesis and chromosome biology. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2019 doi: 10.1007/s10577-018-9601-4. PubMed DOI
Grummt I. The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–497. doi: 10.1007/s00412-013-0430-0. PubMed DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
James S.A., O’Kelly M.J.T., Carter D.M., Davey R.P., van Oudenaarden A., Roberts I.N. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Res. 2009;19:626–635. doi: 10.1101/gr.084517.108. PubMed DOI PMC
Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. B. 2014;90:119–129. doi: 10.2183/pjab.90.119. PubMed DOI PMC
Russell J., Zomerdijk J.C.B.M. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem. Sci. 2005;30:87–96. doi: 10.1016/j.tibs.2004.12.008. PubMed DOI PMC
Santoro R., Schmitz K.-M., Sandoval J., Grummt I. Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep. 2010;11:52–58. doi: 10.1038/embor.2009.254. PubMed DOI PMC
Grimaldi G., Di Nocera P.P. Multiple repeated units in Drosophila melanogaster ribosomal DNA spacer stimulate rRNA precursor transcription. Proc. Natl. Acad. Sci. USA. 1988;85:5502–5506. doi: 10.1073/pnas.85.15.5502. PubMed DOI PMC
Mayer C., Neubert M., Grummt I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep. 2008;9:774–780. doi: 10.1038/embor.2008.109. PubMed DOI PMC
Németh A., Längst G. Genome organization in and around the nucleolus. Trends Genet. TIG. 2011;27:149–156. doi: 10.1016/j.tig.2011.01.002. PubMed DOI
Howell W.M., Black D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI
Thiry M., Lafontaine D.L.J. Birth of a nucleolus: The evolution of nucleolar compartments. Trends Cell Biol. 2005;15:194–199. doi: 10.1016/j.tcb.2005.02.007. PubMed DOI
Thiry M., Lamaye F., Lafontaine D.L.J. The nucleolus: When 2 became 3. Nucleus. 2011;2:289–293. doi: 10.4161/nucl.2.4.16806. PubMed DOI
Henras A.K., Plisson-Chastang C., O’Donohue M.-F., Chakraborty A., Gleizes P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015;6:225–242. doi: 10.1002/wrna.1269. PubMed DOI PMC
Garcia S., Garnatje T., Kovařík A. Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma. 2012;121:389–394. doi: 10.1007/s00412-012-0368-7. PubMed DOI
Kobayashi T., Sasaki M. Ribosomal DNA stability is supported by many ‘buffer genes’—introduction to the Yeast rDNA Stability Database. FEMS Yeast Res. 2017;17 doi: 10.1093/femsyr/fox001. PubMed DOI
Pikaard C.S. Nucleolar dominance: Uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol. Biol. 2000;43:163–177. doi: 10.1023/A:1006471009225. PubMed DOI
Michalak K., Maciak S., Kim Y.B., Santopietro G., Oh J.H., Kang L., Garner H.R., Michalak P. Nucleolar dominance and maternal control of 45S rDNA expression. Proc. R. Soc. B Biol. Sci. 2015;282:20152201. doi: 10.1098/rspb.2015.2201. PubMed DOI PMC
Maciak S., Michalak K., Kale S.D., Michalak P. Nucleolar Dominance and Repression of 45S Ribosomal RNA Genes in Hybrids between Xenopus borealis and X. muelleri (2n = 36) Cytogenet. Genome Res. 2016;149:290–296. doi: 10.1159/000450665. PubMed DOI
Xiao J., Hu F., Luo K., Li W., Liu S. Unique nucleolar dominance patterns in distant hybrid lineage derived from Megalobrama Amblycephala × Culter Alburnus. BMC Genet. 2016;17 doi: 10.1186/s12863-016-0457-3. PubMed DOI PMC
Cao L., Qin Q., Xiao Q., Yin H., Wen J., Liu Q., Huang X., Huo Y., Tao M., Zhang C., et al. Nucleolar Dominance in a Tetraploidy Hybrid Lineage Derived From Carassius auratus red var. () × Megalobrama amblycephala () Front. Genet. 2018;9 doi: 10.3389/fgene.2018.00386. PubMed DOI PMC
Onishi T., Berglund C., Reeder R.H. On the mechanism of nucleolar dominance in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA. 1984;81:484–487. doi: 10.1073/pnas.81.2.484. PubMed DOI PMC
Greil F., Ahmad K. Nucleolar Dominance of the Y Chromosome in Drosophila melanogaster. Genetics. 2012;191:1119–1128. doi: 10.1534/genetics.112.141242. PubMed DOI PMC
Tautz D., Hancock J.M., Webb D.A., Tautz C., Dover G.A. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 1988;5:366–376. PubMed
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish: CYTOGENOMICS OF GARS. J. Exp. Zoolog. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Castro S.I., Hleap J.S., Cárdenas H., Blouin C. Molecular organization of the 5S rDNA gene type II in elasmobranchs. RNA Biol. 2016;13:391–399. doi: 10.1080/15476286.2015.1100796. PubMed DOI PMC
Szymanski M., Barciszewska M.Z., Erdmann V.A., Barciszewski J. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002;30:176–178. doi: 10.1093/nar/30.1.176. PubMed DOI PMC
Dinman J.D. 5S rRNA: Structure and Function from Head to Toe. Int. J. Biomed. Sci. IJBS. 2005;1:2–7. PubMed PMC
Locati M.D., Pagano J.F.B., Ensink W.A., van Olst M., van Leeuwen S., Nehrdich U., Zhu K., Spaink H.P., Girard G., Rauwerda H., et al. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA. 2017;23:446–456. doi: 10.1261/rna.059642.116. PubMed DOI PMC
Peterson R.C., Doering J.L., Brown D.D. Characterization of two xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell. 1980;20:131–141. doi: 10.1016/0092-8674(80)90241-X. PubMed DOI
Tomaszewski R., Jerzmanowski A. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. Nucleic Acids Res. 1997;25:458–466. doi: 10.1093/nar/25.3.458. PubMed DOI PMC
Wolffe A.P., Brown D.D. Developmental regulation of two 5S ribosomal RNA genes. Science. 1988;241:1626–1632. doi: 10.1126/science.3420414. PubMed DOI
Martins C., Galetti P.M. Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica. 2001;111:439–446. doi: 10.1023/A:1013799516717. PubMed DOI
Pisano E., editor. Fish Cytogenetics. Science Publishers; Enfield, NH, USA: 2007.
Dimarco E., Cascone E., Bellavia D., Caradonna F. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus. Gene. 2012;508:21–25. doi: 10.1016/j.gene.2012.07.067. PubMed DOI
Vierna J., Wehner S., Höner zu Siederdissen C., Martínez-Lage A., Marz M. Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity. 2013;111:410–421. doi: 10.1038/hdy.2013.63. PubMed DOI PMC
Conrad B., Antonarakis S.E. Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease. Annu. Rev. Genomics Hum. Genet. 2007;8:17–35. doi: 10.1146/annurev.genom.8.021307.110233. PubMed DOI
The Wellcome Trust Case Control Consortium. Conrad D.F., Pinto D., Redon R., Feuk L., Gokcumen O., Zhang Y., Aerts J., Andrews T.D., Barnes C., et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–712. doi: 10.1038/nature08516. PubMed DOI PMC
Rice A.M., McLysaght A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 2017;8:14366. doi: 10.1038/ncomms14366. PubMed DOI PMC
Gibbons J.G., Branco A.T., Yu S., Lemos B. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat. Commun. 2014;5 doi: 10.1038/ncomms5850. PubMed DOI
Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. PubMed DOI
Oakes M., Siddiqi I., Vu L., Aris J., Nomura M. Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA. Mol. Cell. Biol. 1999;19:8559–8569. doi: 10.1128/MCB.19.12.8559. PubMed DOI PMC
Jack C.V., Cruz C., Hull R.M., Keller M.A., Ralser M., Houseley J. Regulation of ribosomal DNA amplification by the TOR pathway. Proc. Natl. Acad. Sci. 2015;112:9674–9679. doi: 10.1073/pnas.1505015112. PubMed DOI PMC
Chestkov I.V., Jestkova E.M., Ershova E.S., Golimbet V.E., Lezheiko T.V., Kolesina N.Y., Porokhovnik L.N., Lyapunova N.A., Izhevskaya V.L., Kutsev S.I., et al. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018;197:305–314. doi: 10.1016/j.schres.2018.01.001. PubMed DOI
Gibbons J.G., Branco A.T., Godinho S.A., Yu S., Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC
Porokhovnik L.N., Lyapunova N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res. 2019;27:5–17. doi: 10.1007/s10577-018-9587-y. PubMed DOI
Wang M., Lemos B. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet. 2017;13:e1006994. doi: 10.1371/journal.pgen.1006994. PubMed DOI PMC
Xu B., Li H., Perry J.M., Singh V.P., Unruh J., Yu Z., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC
Eagle S.H., Crease T.J. Copy number variation of ribosomal DNA and Pokey transposons in natural populations of Daphnia. Mob. DNA. 2012;3:4. doi: 10.1186/1759-8753-3-4. PubMed DOI PMC
Locati M.D., Pagano J.F.B., Girard G., Ensink W.A., van Olst M., van Leeuwen S., Nehrdich U., Spaink H.P., Rauwerda H., Jonker M.J., et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA. 2017;23:1188–1199. doi: 10.1261/rna.061515.117. PubMed DOI PMC
Dion-Cote A.-M., Symonova R., Rab P., Bernatchez L. Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proc. R. Soc. B Biol. Sci. 2015;282:20142862. doi: 10.1098/rspb.2014.2862. PubMed DOI PMC
Dion-Côté A.-M., Symonová R., Lamaze F.C., Pelikánová Š., Ráb P., Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: The role of historical contingency and relevance for speciation. Mol. Ecol. 2017;26:178–192. doi: 10.1111/mec.13816. PubMed DOI
Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genomics. 2017;18 doi: 10.1186/s12864-017-3774-7. PubMed DOI PMC
Martins C., Wasko A.P., Oliveira C., Porto-Foresti F., Parise-Maltempi P.P., Wright J.M., Foresti F. Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: Repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet. Genome Res. 2002;98:78–85. doi: 10.1159/000068542. PubMed DOI
Nakajima R.T., Cabral-de-Mello D.C., Valente G.T., Venere P.C., Martins C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol. Biol. 2012;12:198. doi: 10.1186/1471-2148-12-198. PubMed DOI PMC
Lu K.L., Nelson J.O., Watase G.J., Warsinger-Pepe N., Yamashita Y.M. Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. eLife. 2018;7 doi: 10.7554/eLife.32421. PubMed DOI PMC
Gong J., Dong J., Liu X., Massana R. Extremely High Copy Numbers and Polymorphisms of the rDNA Operon Estimated from Single Cell Analysis of Oligotrich and Peritrich Ciliates. Protist. 2013;164:369–379. doi: 10.1016/j.protis.2012.11.006. PubMed DOI
Prescott D.M. The DNA of ciliated protozoa. Microbiol. Rev. 1994;58:233–267. doi: 10.1007/BF00326311. PubMed DOI PMC
Heyse G., Jönsson F., Chang W.-J., Lipps H.J. RNA-dependent control of gene amplification. Proc. Natl. Acad. Sci. USA. 2010;107:22134–22139. doi: 10.1073/pnas.1009284107. PubMed DOI PMC
Pan W.-C., Orias E., Flacks M., Blackburn E.H. Allele-specific, selective amplification of a ribosomal RNA gene in tetrahymena thermophila. Cell. 1982;28:595–604. doi: 10.1016/0092-8674(82)90214-8. PubMed DOI
Symonová R., Majtánová Z., Sember A., Staaks G.B., Bohlen J., Freyhof J., Rábová M., Ráb P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Szathmáry E., Smith J.M. The major evolutionary transitions. Nature. 1995;374:227–232. doi: 10.1038/374227a0. PubMed DOI
Parks M.M., Kurylo C.M., Dass R.A., Bojmar L., Lyden D., Vincent C.T., Blanchard S.C. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 2018;4:eaao0665. doi: 10.1126/sciadv.aao0665. PubMed DOI PMC
Bughio F., Maggert K.A. The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2018 doi: 10.1007/s10577-018-9591-2. PubMed DOI PMC
Torres-Machorro A.L., Hernández R., Cevallos A.M., López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: Witnesses of phylogeny? FEMS Microbiol. Rev. 2010;34:59–86. doi: 10.1111/j.1574-6976.2009.00196.x. PubMed DOI
Drouin G., Tsang C. 5S rRNA Gene Arrangements in Protists: A Case of Nonadaptive Evolution. J. Mol. Evol. 2012;74:342–351. doi: 10.1007/s00239-012-9512-5. PubMed DOI
Mallatt J., Chittenden K.D. The GC content of LSU rRNA evolves across topological and functional regions of the ribosome in all three domains of life. Mol. Phylogenet. Evol. 2014;72:17–30. doi: 10.1016/j.ympev.2013.12.007. PubMed DOI
Agrawal S., Ganley A.R.D. The conservation landscape of the human ribosomal RNA gene repeats. PLOS ONE. 2018;13:e0207531. doi: 10.1371/journal.pone.0207531. PubMed DOI PMC
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. BioEssays. 2008;30:267–272. doi: 10.1002/bies.20723. PubMed DOI
Escobar J.S., Glémin S., Galtier N. GC-Biased Gene Conversion Impacts Ribosomal DNA Evolution in Vertebrates, Angiosperms, and Other Eukaryotes. Mol. Biol. Evol. 2011;28:2561–2575. doi: 10.1093/molbev/msr079. PubMed DOI
Li B., Kremling K.A.G., Wu P., Bukowski R., Romay M.C., Xie E., Buckler E.S., Chen M. Coregulation of ribosomal RNA with hundreds of genes contributes to phenotypic variation. Genome Res. 2018;28:1555–1565. doi: 10.1101/gr.229716.117. PubMed DOI PMC
Ganley A.R.D., Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007;17:184–191. doi: 10.1101/gr.5457707. PubMed DOI PMC
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2007;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Stults D.M., Killen M.W., Williamson E.P., Hourigan J.S., Vargas H.D., Arnold S.M., Moscow J.A., Pierce A.J. Human rRNA Gene Clusters Are Recombinational Hotspots in Cancer. Cancer Res. 2009;69:9096–9104. doi: 10.1158/0008-5472.CAN-09-2680. PubMed DOI
Paredes S., Branco A.T., Hartl D.L., Maggert K.A., Lemos B. Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. PLoS Genet. 2011;7:e1001376. doi: 10.1371/journal.pgen.1001376. PubMed DOI PMC
Paredes S., Maggert K.A. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sci. USA. 2009;106:17829–17834. doi: 10.1073/pnas.0906811106. PubMed DOI PMC
Prokopowich C.D., Gregory T.R., Crease T.J. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. doi: 10.1139/g02-103. PubMed DOI
Banditt M., Koller T., Sogo J.M. Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999;19:4953–4960. doi: 10.1128/MCB.19.7.4953. PubMed DOI PMC
Pederson T. The Nucleolus. Cold Spring Harb. Perspect. Biol. 2011;3:a000638. doi: 10.1101/cshperspect.a000638. PubMed DOI PMC
Yu S., Lemos B. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome. Genome Biol. Evol. 2016;8:3545–3558. doi: 10.1093/gbe/evw257. PubMed DOI PMC
Yu S., Lemos B. The long-range interaction map of ribosomal DNA arrays. PLoS Genet. 2018;14:e1007258. doi: 10.1371/journal.pgen.1007258. PubMed DOI PMC
Bierhoff H., Postepska-Igielska A., Grummt I. Noisy silence: Non-coding RNA and heterochromatin formation at repetitive elements. Epigenetics. 2014;9:53–61. doi: 10.4161/epi.26485. PubMed DOI PMC
McStay B., Grummt I. The Epigenetics of rRNA Genes: From Molecular to Chromosome Biology. Annu. Rev. Cell Dev. Biol. 2008;24:131–157. doi: 10.1146/annurev.cellbio.24.110707.175259. PubMed DOI
Schöfer C., Weipoltshammer K. Nucleolus and chromatin. Histochem. Cell Biol. 2018;150:209–225. doi: 10.1007/s00418-018-1696-3. PubMed DOI PMC
Eickbush T.H., Eickbush D.G. Finely Orchestrated Movements: Evolution of the Ribosomal RNA Genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Robicheau B.M., Susko E., Harrigan A.M., Snyder M. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome. Genome Biol. Evol. 2017;9:380–397. doi: 10.1093/gbe/evw307. PubMed DOI PMC
Bernardi G. Structural and Evolutionary Genomics: Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2005.
Galtier N., Piganeau G., Mouchiroud D., Duret L. GC-content evolution in mammalian genomes: The biased gene conversion hypothesis. Genetics. 2001;159:907–911. PubMed PMC
Varriale A., Torelli G., Bernardi G. Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA. 2008;14:1492–1500. doi: 10.1261/rna.957108. PubMed DOI PMC
Wang H.-C., Xia X., Hickey D. Thermal adaptation of the small subunit ribosomal RNA gene: A comparative study. J. Mol. Evol. 2006;63:120–126. doi: 10.1007/s00239-005-0255-4. PubMed DOI
Parker M.S., Balasubramaniam A., Sallee F.R., Parker S.L. The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs. Front. Genet. 2018;9 doi: 10.3389/fgene.2018.00066. PubMed DOI PMC
Parker M.S., Sallee F.R., Park E.A., Parker S.L. Homoiterons and expansion in ribosomal RNAs. FEBS Open Bio. 2015;5:864–876. doi: 10.1016/j.fob.2015.10.005. PubMed DOI PMC
Demeshkina N., Repkova M., Ven’Yaminova A., Graifer D., Karpova G. Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P, and E sites: A crosslinking study with mRNA analogs carrying an aryl azide group at either the uracil or the guanine residue. RNA. 2000;6:1727–1736. doi: 10.1017/S1355838200000996. PubMed DOI PMC
Barendt P.A., Shah N.A., Barendt G.A., Kothari P.A., Sarkar C.A. Evidence for Context-Dependent Complementarity of Non-Shine-Dalgarno Ribosome Binding Sites to Escherichia coli rRNA. ACS Chem. Biol. 2013;8:958–966. doi: 10.1021/cb3005726. PubMed DOI PMC
Forsdyke D.R. Evolutionary Bioinformatics. 3rd ed. Springer; Cham, Switzerland: 2016.
Coleman A.W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003;19:370–375. doi: 10.1016/S0168-9525(03)00118-5. PubMed DOI
Coleman A.W. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–3329. doi: 10.1093/nar/gkm233. PubMed DOI PMC
Coleman A.W. Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure. Trends Genet. 2015;31:157–163. doi: 10.1016/j.tig.2015.01.002. PubMed DOI
Ruhl M.W., Wolf M., Jenkins T.M. Compensatory base changes illuminate morphologically difficult taxonomy. Mol. Phylogenet. Evol. 2010;54:664–669. doi: 10.1016/j.ympev.2009.07.036. PubMed DOI
Muller T., Philippi N., Dandekar T., Schultz J., Wolf M. Distinguishing species. RNA. 2007;13:1469–1472. doi: 10.1261/rna.617107. PubMed DOI PMC
Song J., Shi L., Li D., Sun Y., Niu Y., Chen Z., Luo H., Pang X., Sun Z., Liu C., et al. Extensive Pyrosequencing Reveals Frequent Intra-Genomic Variations of Internal Transcribed Spacer Regions of Nuclear Ribosomal DNA. PLoS ONE. 2012;7:e43971. doi: 10.1371/journal.pone.0043971. PubMed DOI PMC
Schultz J., Wolf M. ITS2 sequence–structure analysis in phylogenetics: A how-to manual for molecular systematics. Mol. Phylogenet. Evol. 2009;52:520–523. doi: 10.1016/j.ympev.2009.01.008. PubMed DOI
Ruhl W.M. Master Thesis. University of Georgia in Athens; Athens, Greece: 2009. Compensatory Base Changes Illuminate Morphologically Difficult Taxonomy. PubMed
Nakhoul H., Ke J., Zhou X., Liao W., Zeng S.X., Lu H. Ribosomopathies: mechanisms of disease. Clin. Med. Insights Blood Disord. 2014;7:7–16. doi: 10.4137/CMBD.S16952. PubMed DOI PMC
Hetman M. Role of the nucleolus in human diseases. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2014;1842:757. doi: 10.1016/j.bbadis.2014.03.004. PubMed DOI
Quin J.E., Devlin J.R., Cameron D., Hannan K.M., Pearson R.B., Hannan R.D. Targeting the nucleolus for cancer intervention. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2014;1842:802–816. doi: 10.1016/j.bbadis.2013.12.009. PubMed DOI
Woods S.J., Hannan K.M., Pearson R.B., Hannan R.D. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2015;1849:821–829. doi: 10.1016/j.bbagrm.2014.10.007. PubMed DOI
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features
DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows
Present and Future Salmonid Cytogenetics
The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum