DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34599322
PubMed Central
PMC8557787
DOI
10.1093/gbe/evab228
PII: 6380143
Knihovny.cz E-zdroje
- Klíčová slova
- Umbra, Robertsonian fusion, centric fission, genome expansion, repetitive sequences,
- MeSH
- délka genomu MeSH
- transpozibilní elementy DNA genetika MeSH
- Umbridae * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.
Department of Biology Faculty of Biology University of Hradec Kralove Czech Republic
Department of Biology IBIS Université Laval Québec QC Canada
Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
Research Department for Limnology Mondsee University of Innsbruck Mondsee Austria
Zobrazit více v PubMed
Altschul SF, et al.1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402. PubMed PMC
Arai R. 2011. Fish karyotypes: a check list. Japan: Springer.
Bao W, Kojima KK, Kohany O.. 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 6:11. PubMed PMC
Bernatchez L, Wilson CC.. 1998. Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol. 7(4):431–452.
Borisova OF, Razjivin AP, Zaregorodzev VI.. 1974. Evidence for the quinacrine fluorescence on three at pairs of DNA. FEBS Lett. 46(1):239–242. PubMed
Brawand D, et al.2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513(7518):375–381. PubMed PMC
Calton MS, Denton TE.. 1974. Chromosomes of the chocolate gourami: a cytogenetic anomaly. Science 185(4151):618–619. PubMed
Dodsworth S, Chase MW, Leitch AR.. 2016. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc. 180(1):1–5.
Dolgin ES, Charlesworth B.. 2008. The effects of recombination rate on the distribution and abundance of transposable elements. Genetics 178(4):2169–2177 PubMed PMC
Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 5(6):435–445. PubMed
Elliott TA, Gregory TR.. 2015. Do larger genomes contain more diverse transposable elements? BMC Evol Biol. 15:1–10. PubMed PMC
Fedoroff NV. 2012. Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767. PubMed
Fontdevila A. 2011. The dynamic genome: a Darwinian approach. Oxford: OUP.
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC.. 1998. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosom Res. 6(6):463–471. PubMed
Gao B, et al.2017. Characterization of autonomous families of Tc1/mariner transposons in neoteleost genomes. Mar Genomics. 34:67–77. PubMed
Gao B, et al.2016. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA. 7:1–16. PubMed PMC
Garagna S, et al.1995. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103(10):685–692. PubMed
Gilbert C, Williams J.. 2002. Field guide to fishes. North America. New York: Alfred A. Knopf.
Grabherr MG, et al.2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644–652. PubMed PMC
Gregory TR. 2020. Animal genome size database. Available from: http://www.genomesize.com.
Gregory TR. 2002. Genome size and developmental complexity. Genetica 115(1):131–146. PubMed
Gregory TR, Hebert PDN.. 1999. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9(4):317–324. PubMed
Hardie DC, Hebert PDN.. 2004. Genome-size evolution in fishes. Can J Fish Aquat Sci. 61(9):1636–1646.
Hinegardner R. 1968. Evolution of cellular DNA content in teleost fishes. Am Nat. 102(928):517–523.
Hinegardner R, Rosen DE.. 1972. Cellular DNA content and the evolution of teleostean fishes. Am Nat. 106(951):621–644.
Jensen-Seaman MI, et al.2004. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 14(4):528–538. PubMed PMC
Jurka J, Klonowski P, Dagman V, Pelton P.. 1996. CENSOR – a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem. 20(1):119–121. PubMed
Kapusta A, Suh A, Feschotte C.. 2017. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A. 114(8):E1460–E1469. PubMed PMC
Kent TV, Uzunović J, Wright SI.. 2017. Coevolution between transposable elements and recombination. Philos. Trans. R. Soc. B Biol. Sci. 372:1736. doi: 10.1098/rstb.2016.0458. PubMed DOI PMC
Khoshkholgh M, Alireza A, Sajad N.. 2015. Karyotypic characterization of the pike, Esox lucius from the south Caspian Sea basin. Iran J Anim Biosyst. 11:43–49.
Kirtiklis L, Ocalewicz K, Wiechowska M, Boroń A, Hliwa P.. 2014. Molecular cytogenetic study of the European bitterling Rhodeus amarus (Teleostei: cyprinidae: acheilognathinae). Genetica 142(2):141–148. PubMed PMC
Koref-Santibanez S, Paepke H.. 1994. Karyotypes of the Trichogasterinae Liem (Teleostei, Anabantoidei.). In: Abstr. VIII Congr. Soc. Eur. Ichthyol. Oviedo. p. 55.
Koukalova B, et al.2010. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol. 186(1):148–160. PubMed
Kuehne LM, Olden JD.. 2014. Ecology and conservation of Mudminnow species worldwide. Fisheries 39(8):341–351.
Lamatsch DK, Steinlein C, Schmid M, Schartl M.. 2000. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39(2):91–95. PubMed
Li JT, et al.2015. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio). Sci Rep. 5:1–9. PubMed PMC
Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I.. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat Ecol Evol. 2(11):1792–1799. PubMed
Lien S, et al.2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205. PubMed PMC
Lu J, Peatman E, Tang H, Lewis J, Liu Z.. 2012. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics. 13:246–210. PubMed PMC
Lynch M. 2007. The origins of genome architecture. Oxford: Oxford University Press (OUP).
Macqueen DJ, Johnston IA.. 2014. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci. 281(1778):20132881. PubMed PMC
Mank JE, Avise JC.. 2006. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 127(1-3):321–327. PubMed
Marburger S, et al.2018. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proc R Soc B. 285(1872):20172732. PubMed PMC
Marić S, et al.2017. Phylogeography and population genetics of the European mudminnow (Umbra krameri) with a time-calibrated phylogeny for the family Umbridae. Hydrobiologia 792(1):151–168.
Martin-Bergmann KA, Gee JH.. 1985. The central mudminnow, Umbra limi (Kirtland), a habitat specialist and resource generalist. Can J Zool. 63(8):1753–1764.
Meyne J, et al.1990. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99(1):3–10. PubMed
Mugal CF, Weber CC, Ellegren H.. 2015. GC-biased gene conversion links the recombination landscape and demography to genomic base composition. Bioessays 37(12):1317–1326. PubMed
Nam K, Ellegren H.. 2012. Recombination drives vertebrate genome contraction. PLoS Genet. 8(5):e1002680. PubMed PMC
Nanda I, Schneider-Rasp S, Winking H, Schmid M.. 1995. Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: muridae) during Robertsonian rearrangements. Chromosome Res. 3(7):399–409. PubMed
Nelson JS, Grande TC, Wilson MVH.. 2016. Fishes of the world, 5th ed. Hoboken: Wiley.
Ocalewicz K, et al.2013. Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica 141(10-12):409–416. PubMed PMC
Ocalewicz K. 2013. Telomeres in fishes. Cytogenet Genome Res. 141(2-3):114–125. PubMed
Ohno S. 2013. Evolution by gene duplication. Berlin Heidelberg: Springer.
Ou S, Jiang N.. 2018. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176(2):1410–1422. PubMed PMC
Pan Q, et al.2021. The rise and fall of the ancient northern pike master sex determining gene. Elife 10:1–50. PubMed PMC
Pasquier J, et al.2016. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 17:368. PubMed PMC
Van de Peer Y, Mizrachi E, Marchal K.. 2017. The evolutionary significance of polyploidy. Nat Rev Genet. 18(7):411–424. PubMed
Pendas AM, Moran P, Freije JP, Garcia-Vazquez E.. 1994. Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Cell Genet. 67(1):31–36. PubMed
Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL.. 2000. Evidence for DNA loss as a determinant of genome size. Science 287(5455):1060–1062. PubMed
Post A. 1974. Ergebnisse der Forschungsreisen des FFS “Walther Herwig” nach Südamerika. XXXIV. Die Chromosomen von drei Arten aus der Familie Gonostomatidae (Osteichthyes, Stomiatoidei). Arch Fischwiss. 25:51–55.
Pritham EJ. 2009. Transposable elements and factors influencing their success in eukaryotes. J Hered. 100(5):648–655. PubMed PMC
Qumsiyeh MB. 1994. Evolution of number and morphology of mammalian chromosomes. J Hered. 85(6):455–465. PubMed
Ráb P. 2004. Karyotype evolution in fishes of the order Esociformes [Habilitation Thesis]. Prague: Charles University in Prague (in Czech).
Ray D, et al.2008. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res. 18(5):717–728. PubMed PMC
Rondeau EB, et al.2014. The genome and linkage map of the Northern Pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 9(7):e102089. PubMed PMC
Rozenfeld C, et al.2019. De novo European eel transcriptome provides insights into the evolutionary history of duplicated genes in teleost lineages. PLoS One. 14(6):e0218085. PubMed PMC
Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H.. 2018. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19(1):166. PubMed PMC
Sehr M, Keckeis H.. 2017. Habitat use of the European mudminnow Umbra krameri and association with other fish species in a disconnected Danube side arm. J Fish Biol. 91(4):1072–1093. PubMed
Shao F, Han M, Peng Z.. 2019. Evolution and diversity of transposable elements in fish genomes. Sci. Rep. 9:1–8. PubMed PMC
Sievers F, Higgins DG.. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27(1):135–145. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. PubMed
Skog A, Vøllestad LA, Stenseth NC, Kasumyan A, Jakobsen KS.. 2014. Circumpolar phylogeography of the northern pike (Esox lucius) and its relationship to the Amur pike (E. reichertii). Front Zool. 11:67.
Slijepcevic P. 1998. Telomeres and mechanisms of Robertsonian fusion. Chromosoma 107(2):136–140. PubMed
Smit AFA, Hubley R.. 2008. RepeatModeler Open-1.0. Available from: www.repeatmasker.org.
Smit AFA, Hubley R, Green P.. 2010. RepeatMasker Open-4.0. Available from:www.repeatmasker.org.
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A.. 2018. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127(1):141–150. PubMed PMC
Sonnhammer ELL, Durbin R.. 1995. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167(1-2):GC1. PubMed
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. PubMed
Sun C, et al.2012. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol. 4(2):168–183. PubMed PMC
Symonová R, et al.2017. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics. 18(1):391. PubMed PMC
Symonová R. 2019. Integrative rDNAomics—importance of the oldest repetitive fraction of the eukaryote genome. Genes (Basel). 10(5):345. PubMed PMC
Tenaillon MI, Hollister JD, Gaut BS.. 2010. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 15(8):471–478. PubMed
Vinogradov AE. 1998. Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31(2):100–109. PubMed
Vurture GW, et al.. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 33(14):2202–2204. PubMed PMC
Wanzenböck J, Spindler T.. 1995. Rediscovery of Umbra krameri (Walbaum, 1972) in Austria and subsequent investigations. Ann. des Naturhistorischen Museums Wien. Ser. B Für Bot. Zool. 97:450–457.
Wong WY, et al.2019. Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra. Proc Natl Acad Sci U S A. 116(46):22915–22917. PubMed PMC
Yuan Z, et al.2018. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics 19(1):1–10. PubMed PMC