Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides

. 2021 Jul ; 11 (13) : 8754-8767. [epub] 20210525

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34257925

Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.

Zobrazit více v PubMed

Acevedo‐Whitehouse, K. , & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3429–3438. 10.1098/rstb.2009.0128 PubMed DOI PMC

Acosta, M. J. , Marchal, J. A. , Fernández‐Espartero, C. , Romero‐Fernández, I. , Rovatsos, M. T. , Giagia‐Athanasopoulou, E. B. , Gornung, E. , Castiglia, R. , & Sánchez, A. (2010). Characterization of the satellite DNA Msat‐160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae). Genetica, 138, 1085–1098. 10.1007/s10709-010-9496-2 PubMed DOI

Acosta, M. J. , Marchal, J. A. , Martínez, S. , Puerma, E. , Bullejos, M. , de Guardia, R. D. L. , & Sánchez, A. (2007). Characterization of the satellite DNA Msat‐160 from the species Chionomys nivalis (Rodentia, Arvicolinae). Genetica, 130, 43–51. 10.1007/s10709-006-0018-1 PubMed DOI

Aldrich, J. C. , & Maggert, K. A. (2015). Transgenerational inheritance of diet‐induced genome rearrangements in Drosophila . PLoS Genetics, 11, 1–21. 10.1371/journal.pgen.1005148 PubMed DOI PMC

Alexandrov, I. , Kazakov, A. , Tumeneva, I. , Shepelev, V. , & Yurov, Y. (2001). Alpha‐satellite DNA of primates: Old and new families. Chromosoma, 110, 253–266. 10.1007/s004120100146 PubMed DOI

Altschul, S. F. , Gish, W. , Miller, W. , Myers, E. W. , & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Ayouaz, A. , Raynaud, C. , Heride, C. , Revaud, D. , & Sabatier, L. (2008). Telomeres: Hallmarks of radiosensitivity. Biochimie, 90, 60–72. 10.1016/j.biochi.2007.09.011 PubMed DOI

Baker, R. J. , Dickins, B. , Wickliffe, J. K. , Khan, F. A. A. , Gaschak, S. , Makova, K. D. , & Phillips, C. D. (2017). Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evolutionary Applications, 10, 784–791. 10.1111/eva.12475 PubMed DOI PMC

Baltas, D. , Sakelliou, L. , & Zamboglou, N. (2019). The physics of modern brachytherapy for oncology. CRC Press.

Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting Linear Mixed‐Effects Models Using lme4. Journal of Statistical Software, 67(1). 10.18637/jss.v067.i01 DOI

Beresford, N. A. , Barnett, C. L. , Gashchak, S. , Maksimenko, A. , Guliaichenko, E. , Wood, M. D. , & Izquierdo, M. (2020). Radionuclide transfer to wildlife at a ‘Reference site’ in the Chernobyl Exclusion Zone and resultant radiation exposures. Journal of Environmental Radioactivity, 211, 105661. 10.1016/j.jenvrad.2018.02.007 PubMed DOI

Beresford, N. A. , & Copplestone, D. (2011). Effects of ionizing radiation on wildlife: What knowledge have we gained between the chernobyl and fukushima accidents? Integrated Environmental Assessment and Management, 7, 371–373. 10.1002/ieam.238 PubMed DOI

Beresford, N. A. , Fesenko, S. , Konoplev, A. , Skuterud, L. , Smith, J. T. , & Voigt, G. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77–89. 10.1016/j.jenvrad.2016.02.003 PubMed DOI

Beresford, N. A. , Gaschak, S. , Barnett, C. L. , Howard, B. J. , Chizhevsky, I. , Strømman, G. , Oughton, D. H. , Wright, S. M. , Maksimenko, A. , & Copplestone, D. (2008). Estimating the exposure of small mammals at three sites within the Chernobyl exclusion zone – A test application of the ERICA Tool. Journal of Environmental Radioactivity, 99, 1496–1502. 10.1016/j.jenvrad.2008.03.002 PubMed DOI

Biscotti, M. A. , Canapa, A. , Forconi, M. , Olmo, E. , & Barucca, M. (2015). Transcription of tandemly repetitive DNA: Functional roles. Chromosome Research, 23, 463–477. 10.1007/s10577-015-9494-4 PubMed DOI

Biscotti, M. A. , Olmo, E. , & Heslop‐Harrison, J. S. (2015). Repetitive DNA in eukaryotic genomes. Chromosome Research, 23, 415–420. 10.1007/s10577-015-9499-z PubMed DOI

Bouffler, S. D. , Bridges, B. A. , Cooper, D. N. , Dubrova, Y. , McMillan, T. J. , Thacker, J. , Wright, E. G. , & Waters, R. (2006). Assessing radiation‐associated mutational risk to the germline: Repetitive DNA sequences as mutational targets and biomarkers. Radiation Research, 165, 249–268. 10.1667/rr3506.1 PubMed DOI

Bréchignac, F. , Oughton, D. , Mays, C. , Barnthouse, L. , Beasley, J. C. , Bonisoli‐Alquati, A. , Bradshaw, C. , Brown, J. , Dray, S. , Geras'kin, S. , Glenn, T. , Higley, K. , Ishida, K. , Kapustka, L. , Kautsky, U. , Kuhne, W. , Lynch, M. , Mappes, T. , Mihok, S. , … Tsukada, H. (2016). Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: Agreed statements from a Consensus Symposium. Journal of Environmental Radioactivity, 158–159, 21–29. 10.1016/j.jenvrad.2016.03.021 PubMed DOI PMC

Burnham, K. P. , & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information‐theoretic approach (2nd ed.). Springer‐Verlag.

Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30, 47e–47. 10.1093/nar/30.10.e47 PubMed DOI PMC

Chesser, R. K. , Sugg, D. W. , Lomakin, M. D. , van den Bussche, R. A. , DeWoody, J. A. , Jagoe, C. H. , Dallas, C. E. , Whicker, F. W. , Smith, M. H. , Gaschak, S. P. , Chizhevsky, I. V. , Lyabik, V. V. , Buntova, E. G. , Holloman, K. , & Baker, R. J. (2000). Concentrations and dose rate estimates of 134137 cesium and 90 strontium in small mammals at chornobyl, Ukraine. Environmental Toxicology and Chemistry, 19, 305–312. 10.1002/etc.5620190209 DOI

Chiolo, I. , Minoda, A. , Colmenares, S. U. , Polyzos, A. , Costes, S. V. , & Karpen, G. H. (2011). Double‐strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell, 144, 732–744. 10.1016/j.cell.2011.02.012 PubMed DOI PMC

Chow, E. W. L. , Morrow, C. A. , Djordjevic, J. T. , Wood, I. A. , & Fraser, J. A. (2012). Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Molecular Biology and Evolution, 29, 1987–2000. 10.1093/molbev/mss066 PubMed DOI

Coen, E. S. , & Dover, G. A. (1983). Unequal exchanges and the coevolution of X and Y rDNA arrays in drosophila melanogaster. Cell, 33, 849–855. 10.1016/0092-8674(83)90027-2 PubMed DOI

Cristy, M. , & Eckerman, K. F. (1987). Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male. Oak Ridge National Laboratory, Tennessee, USA. https://www.osti.gov/servlets/purl/6233638

Desouky, O. , Ding, N. , & Zhou, G. (2015). Targeted and non‐targeted effects of ionizing radiation. Journal of Radiation Research and Applied Sciences, 8, 247–254. 10.1016/j.jrras.2015.03.003 DOI

Dubrova, Y. E. (1998). Radiation‐induced germline instability at minisatellite loci. International Journal of Radiation Biology, 74, 689–696. 10.1080/095530098140952 PubMed DOI

Dzyubenko, E. V. , & Gudkov, D. I. (2009). Cytogenetical and haematological effects of long‐term irradiation on freshwater gastropod snails in the Chernobyl accident Exclusion Zone. Radioprotection, 44, 933–936. 10.1051/radiopro/20095166 DOI

Einor, D. , Bonisoli‐Alquati, A. , Costantini, D. , Mousseau, T. A. , & Møller, A. P. (2016). Ionizing radiation, antioxidant response and oxidative damage: A meta‐analysis. Science of the Total Environment, 548–549, 463–471. 10.1016/j.scitotenv.2016.01.027 PubMed DOI

Ellegren, H. , Møller, A. P. , Lindgren, G. , & Primmer, C. R. (1997). Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature, 389, 593–596. 10.1038/39303 PubMed DOI

Foltz, D. R. , Jansen, L. E. T. , Black, B. E. , Bailey, A. O. , Yates, J. R. , & Cleveland, D. W. (2006). The human CENP‐A centromeric nucleosome‐associated complex. Nature Cell Biology, 8, 458–469. 10.1038/ncb1397 PubMed DOI

Franek, M. , Legartová, S. , Suchánková, J. , Milite, C. , Castellano, S. , Sbardella, G. , Kozubek, S. , & Bártová, E. (2015). CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli. Physiological Research, 64, 769–782. 10.33549/physiolres.932952 PubMed DOI

Garnier‐Laplace, J. , Geras’kin, S. , Della‐Vedova, C. , Beaugelin‐Seiller, K. , Hinton, T. G. , Real, A. , & Oudalova, A. (2013). Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. Journal of Environmental Radioactivity, 121, 12–21. 10.1016/j.jenvrad.2012.01.013 PubMed DOI

Gaschak, S. P. , Maklyuk, Y. A. , Maksimenko, A. M. , Bondarkov, M. D. , Jannik, G. T. , & Farfán, E. B. (2011). Radiation ecology issues associated with murine rodents and shrews in the chernobyl exclusion zone. Health Physics, 101, 416–430. 10.1097/HP.0b013e31821e123f PubMed DOI

Gazave, E. , Gautier, P. , Gilchrist, S. , & Bickmore, W. A. (2005). Does radial nuclear organisation influence DNA damage? Chromosome Research, 13, 377–388. 10.1007/s10577-005-3254-9 PubMed DOI

Geyer, P. K. , Vitalini, M. W. , & Wallrath, L. L. (2011). Nuclear organization: Taking a position on gene expression. Current Opinion in Cell Biology, 23, 354–359. PubMed PMC

Gibbons, J. G. , Branco, A. T. , Yu, S. , & Lemos, B. (2014). Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nature Communications, 5, 4850. 10.1038/ncomms5850 PubMed DOI

Gonzalez‐Hunt, C. P. , Wadhwa, M. , & Sanders, L. H. (2018). DNA damage by oxidative stress: Measurement strategies for two genomes. Current Opinion in Toxicology, 7, 87–94. 10.1016/j.cotox.2017.11.001 DOI

Govindaraju, D. R. , & Cullis, C. A. (1992). Ribosomal DNA variation among populations of a Pinus rigida Mill. (pitch pine) ecosystem: I. Distribution of copy numbers. Heredity, 69, 133–140. 10.1038/hdy.1992.106 DOI

Goytisolo, F. A. , Samper, E. , Martín‐Caballero, J. , Finnon, P. , Herrera, E. , Flores, J. M. , Bouffler, S. D. , & Blasco, M. A. (2000). Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. Journal of Experimental Medicine, 192, 1625–1636. 10.1084/jem.192.11.1625 PubMed DOI PMC

Gregory, T. R. (2001). Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma. Biological Reviews, 76, 65–101. 10.1111/j.1469-185X.2000.tb00059.x PubMed DOI

Grewal, S. I. S. , & Jia, S. (2007). Heterochromatin revisited. Nature Reviews Genetics, 8, 35–46. 10.1038/nrg2008 PubMed DOI

Harvey, E. F. , Cristescu, M. E. , Dale, J. , Hunter, H. , Randall, C. , & Crease, T. J. (2020). Metal exposure causes rDNA copy number to fluctuate in mutation accumulation lines of Daphnia pulex. Aquatic Toxicology, 226, 105556. 10.1016/j.aquatox.2020.105556 PubMed DOI

Heydari, A. R. , Unnikrishnan, A. , Lucente, L. V. , & Richardson, A. (2007). Caloric restriction and genomic stability. Nucleic Acids Research, 35, 7485–7496. 10.1093/nar/gkm860 PubMed DOI PMC

Hothorn, T. , Bretz, F. , & Westfall, P. (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal, 50, 346–363. 10.1002/bimj.200810425 PubMed DOI

ICRP (1983). Radionuclide transformations. Energy and intensity of emissions. Ann ICRP. PubMed

Ide, S. , Miyazaki, T. , Maki, H. , & Kobayashi, T. (2010). Abundance of ribosomal RNA gene copies maintains genome integrity. Science, 327, 693–696. 10.1126/science.1179044 PubMed DOI

Ideue, T. , & Tani, T. (2020). Centromeric non‐coding RNAs: Conservation and diversity in function. Non‐Coding RNA, 6, 4. 10.3390/ncrna6010004 PubMed DOI PMC

Isaev, A. G. , Babenko, V. V. , Kazimirov, A. S. , Grishin, S. N. , & Ievlev, S. M. (2010). Minimum detectable activity. Basic concepts and definitions. Problemi Bezpeki Atomnikh Elektrostantsyij Yi Chornobilya, 13, 103–110.

Isaksson, C. (2010). Pollution and its impact on wild animals: A meta‐analysis on oxidative stress. EcoHealth, 7, 342–350. 10.1007/s10393-010-0345-7 PubMed DOI

Jack, C. V. , Cruz, C. , Hull, R. M. , Keller, M. A. , Ralser, M. , & Houseley, J. (2015). Regulation of ribosomal DNA amplification by the TOR pathway. Proceedings of the National Academy of Sciences of the United States of America, 112, 9674–9679. 10.1073/pnas.1505015112 PubMed DOI PMC

Jain, D. , Hebden, A. K. , Nakamura, T. M. , Miller, K. M. , & Cooper, J. P. (2010). HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature, 467, 223–227. 10.1038/nature09374 PubMed DOI

Jakob, B. , Splinter, J. , Conrad, S. , Voss, K.‐O. , Zink, D. , Durante, M. , Löbrich, M. , & Taucher‐Scholz, G. (2011). DNA double‐strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Research, 39(15), 6489–6499. 10.1093/nar/gkr230 PubMed DOI PMC

Jernfors, T. , Kesäniemi, J. , Lavrinienko, A. , Mappes, T. , Milinevsky, G. , Møller, A. P. , Mousseau, T. A. , Tukalenko, E. , & Watts, P. C. (2018). Transcriptional upregulation of DNA damage response genes in bank voles (Myodes glareolus) inhabiting the chernobyl exclusion zone. Frontiers in Environmental Science, 5, 95. 10.3389/fenvs.2017.00095 DOI

Kazak, L. , Reyes, A. , & Holt, I. J. (2012). Minimizing the damage: Repair pathways keep mitochondrial DNA intact. Nature Reviews Molecular Cell Biology, 13, 659–671. 10.1038/nrm3439 PubMed DOI

Kesäniemi, J. , Boratyński, Z. , Danforth, J. , Itam, P. , Jernfors, T. , Lavrinienko, A. , Mappes, T. , Møller, A. P. , Mousseau, T. A. , & Watts, P. C. (2018). Analysis of heteroplasmy in bank voles inhabiting the Chernobyl exclusion zone: A commentary on Baker et al. (2017) “Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evolutionary Applications, 11, 820–826. 10.1111/eva.12578 PubMed DOI PMC

Kesäniemi, J. , Jernfors, T. , Lavrinienko, A. , Kivisaari, K. , Kiljunen, M. , Mappes, T. , & Watts, P. C. (2019). Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Molecular Ecology, 28(20), 4620–4635. 10.1111/mec.15241 PubMed DOI PMC

Kesäniemi, J. , Lavrinienko, A. , Tukalenko, E. , Boratyński, Z. , Kivisaari, K. , Mappes, T. , Milinevsky, G. , Møller, A. P. , Mousseau, T. A. , & Watts, P. C. (2019). Exposure to environmental radionuclides associates with tissue‐specific impacts on telomerase expression and telomere length. Scientific Reports, 9, 850. 10.1038/s41598-018-37164-8 PubMed DOI PMC

Kesäniemi, J. , Lavrinienko, A. , Tukalenko, E. , Moutinho, A. F. , Mappes, T. , Møller, A. P. , Mousseau, T. A. , & Watts, P. C. (2020). Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evolutionary Ecology, 34, 163–174. 10.1007/s10682-019-10028-x DOI

Khadaroo, B. , Teixeira, M. T. , Luciano, P. , Eckert‐Boulet, N. , Germann, S. M. , Simon, M. N. , Gallina, I. , Abdallah, P. , Gilson, E. , Géli, V. , & Lisby, M. (2009). The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biology, 11, 980–987. 10.1038/ncb1910 PubMed DOI

Kobayashi, T. (2011). Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cellular and Molecular Life Sciences, 68, 1395–1403. 10.1007/s00018-010-0613-2 PubMed DOI PMC

Kobayashi, T. (2014). Ribosomal RNA gene repeats, their stability and cellular senescence. Proceedings of the Japan Academy, Series B, 90, 119–129. 10.2183/pjab.90.119 PubMed DOI PMC

Kobayashi, T. , & Sasaki, M. (2017). Ribosomal DNA stability is supported by many ‘buffer genes’—introduction to the Yeast rDNA Stability Database. FEMS Yeast Research, 17, 1–8. 10.1093/femsyr/fox001 PubMed DOI

Komissarov, A. S. , Gavrilova, E. V. , Demin, S. J. , Ishov, A. M. , & Podgornaya, O. I. (2011). Tandemly repeated DNA families in the mouse genome. BMC Genomics, 12, 531. 10.1186/1471-2164-12-531 PubMed DOI PMC

Kozakiewicz, M. , Chołuj, A. , & Kozakiewicz, A. (2007). Long‐distance movements of individuals in a free‐living bank vole population: An important element of male breeding strategy. Acta Theriologica, 52, 339–348. 10.1007/BF03194231 DOI

Kumari, N. , Vartak, S. V. , Dahal, S. , Kumari, S. , Desai, S. S. , Gopalakrishnan, V. , Choudhary, B. , & Raghavan, S. C. (2019). G‐quadruplex structures contribute to differential radiosensitivity of the human genome. iScience, 21, 288–307. 10.1016/j.isci.2019.10.033 PubMed DOI PMC

Larson, K. , Yan, S.‐J. , Tsurumi, A. , Liu, J. , Zhou, J. , Gaur, K. , Guo, D. , Eickbush, T. H. , & Li, W. X. (2012). Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genetics, 8, e1002473. 10.1371/journal.pgen.1002473 PubMed DOI PMC

Lavrinienko, A. , Jernfors, T. , Koskimäki, J. J. , Pirttilä, A. M. , & Watts, P. C. (2020). Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology, 29, 19–27. 10.1016/j.tim.2020.05.019 PubMed DOI

Lavrinienko, A. , Tukalenko, E. , Kesäniemi, J. , Kivisaari, K. , Masiuk, S. , Boratyński, Z. , Mousseau, T. A. , Milinevsky, G. , Mappes, T. , & Watts, P. C. (2020). Applying the Anna Karenina principle for wild animal gut microbiota: Temporal stability of the bank vole gut microbiota in a disturbed environment. Journal of Animal Ecology, 1365–2656, 13342. 10.1111/1365-2656.13342 PubMed DOI

Lehmann, P. , Boratyński, Z. , Mappes, T. , Mousseau, T. A. , & Møller, A. P. (2016). Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl. Scientific Reports, 6, 19974. 10.1038/srep19974 PubMed DOI PMC

Lourenço, J. , Mendo, S. , & Pereira, R. (2016). Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. Journal of Hazardous Materials, 317, 503–542. 10.1016/j.jhazmat.2016.06.020 PubMed DOI

Mappes, T. , Boratyński, Z. , Kivisaari, K. , Lavrinienko, A. , Milinevsky, G. , Mousseau, T. A. , Møller, A. P. , Tukalenko, E. , & Watts, P. C. (2019). Ecological mechanisms can modify radiation effects in a key forest mammal of Chernobyl. Ecosphere, 10, e02667. 10.1002/ecs2.2667 DOI

Melters, D. P. , Bradnam, K. R. , Young, H. A. , Telis, N. , May, M. R. , Ruby, J. , Sebra, R. , Peluso, P. , Eid, J. , Rank, D. , Garcia, J. , DeRisi, J. L. , Smith, T. , Tobias, C. , Ross‐Ibarra, J. , Korf, I. , & Chan, S. W. L. (2013). Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 14, 1–20. 10.1186/gb-2013-14-1-r10 PubMed DOI PMC

Modi, W. S. (1992). Nucleotide sequence and genomic organization of a tandem satellite array from the rock vole Microtus chrotorrhinus (Rodentia). Mammalian Genome, 3, 226–232. 10.1007/BF00355723 PubMed DOI

Modi, W. S. (1993). Heterogeneity in the concerted evolution process of a tandem satellite array in meadow mice (Microtus). Journal of Molecular Evolution, 37, 48–56. 10.1007/BF00170461 PubMed DOI

Møller, A. P. , & Mousseau, T. A. (2015). Strong effects of ionizing radiation from Chernobyl on mutation rates. Scientific Reports, 5, 8363. 10.1038/srep08363 PubMed DOI PMC

Mousseau, T. A. , Moller, A. P. , Møller, A. P. , & Moller, A. P. (2014). Genetic and ecological studies of animals in Chernobyl and Fukushima. Journal of Heredity, 105, 704–709. 10.1093/jhered/esu040 PubMed DOI

Mozgová, I. , Mokroš, P. , & Fajkus, J. (2010). Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45s rDNA in Arabidopsis Thaliana. The Plant Cell, 22, 2768–2780. 10.1105/tpc.110.076182 PubMed DOI PMC

Mustonen, V. , Kesäniemi, J. , Lavrinienko, A. , Tukalenko, E. , Mappes, T. , Watts, P. C. , & Jurvansuu, J. (2018). Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses. BMC Cell Biology, 19, 17. 10.1186/s12860-018-0169-9 PubMed DOI PMC

Pardo‐Manuel de Villena, F. , & Sapienza, C. (2001). Female meiosis drives karyotypic evolution in mammals. Genetics, 159, 1179–1189. 10.1093/genetics/159.3.1179 PubMed DOI PMC

Paredes, S. , Branco, A. T. , Hartl, D. L. , Maggert, K. A. , & Lemos, B. (2011). Ribosomal dna deletions modulate genome‐wide gene expression: “rDNA‐sensitive” genes and natural variation. PLoS Genetics, 7, 1–10. 10.1371/journal.pgen.1001376 PubMed DOI PMC

Parks, M. M. , Kurylo, C. M. , Dass, R. A. , Bojmar, L. , Lyden, D. , Vincent, C. T. , & Blanchard, S. C. (2018). Variant ribosomal RNA alleles are conserved and exhibit tissue‐specific expression. Science Advances, 4(2), eaao0665. 10.1126/sciadv.aao0665 PubMed DOI PMC

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in RT‐PCR. Nucleic Acids Research, 29, 16–21. 10.1093/nar/29.9.e45 PubMed DOI PMC

Plohl, M. , Luchetti, A. , Meštrović, N. , & Mantovani, B. (2008). Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene, 409, 72–82. 10.1016/j.gene.2007.11.013 PubMed DOI

Poetsch, A. R. , Boulton, S. J. , & Luscombe, N. M. (2018). Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis 06 Biological Sciences 0604 Genetics. Genome Biology, 19, 1–23. 10.1186/s13059-018-1582-2 PubMed DOI PMC

Potapova, T. A. , & Gerton, J. L. (2019). Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Research, 27, 109–127. 10.1007/s10577-018-9600-5 PubMed DOI

Prokopowich, C. D. , Gregory, T. R. , & Crease, T. J. (2003). The correlation between rDNA copy number and genome size in eukaryotes. Genome, 46, 48–50. 10.1139/g02-103 PubMed DOI

Qiu, G. H. (2015). Protection of the genome and central protein‐coding sequences by non‐coding DNA against DNA damage from radiation. Mutation Research/Reviews in Mutation Research, 764, 108–117. 10.1016/j.mrrev.2015.04.001 PubMed DOI

Reste, J. , Zvigule, G. , Zvagule, T. , Kurjane, N. , Eglite, M. , Gabruseva, N. , Berzina, D. , Plonis, J. , & Miklasevics, E. (2014). Telomere length in Chernobyl accident recovery workers in the late period after the disaster. Journal of Radiation Research, 55, 1089–1100. 10.1093/jrr/rru060 PubMed DOI PMC

Rodgers, B. E. , & Baker, R. J. (2000). Frequencies of micronuclei in bank voles from zones of high radiation at Chornobyl, Ukraine. Environmental Toxicology and Chemistry, 19, 1644–1648. 10.1002/etc.5620190623 DOI

Salim, D. , Bradford, W. D. , Freeland, A. , Cady, G. , Wang, J. , Pruitt, S. C. , & Gerton, J. L. (2017). DNA replication stress restricts ribosomal DNA copy number. PLoS Genetics, 13, 1–20. 10.1371/journal.pgen.1007006 PubMed DOI PMC

Salim, D. , & Gerton, J. L. (2019). Ribosomal DNA instability and genome adaptability. Chromosome Research, 27, 73–87. 10.1007/s10577-018-9599-7 PubMed DOI

Smiddy, P. , Sleeman, D. P. , & Lysaght, L. (2016). Expansion of range in the Bank Vole (Myodes glareolus) in Co., Waterford: 1994–2009. Irish Naturalists Journal, 35, 17–21.

Stabin, M. G. , & Konijnenberg, M. W. (2000). Re‐evaluation of absorbed fractions for photons and electrons in spheres of various sizes. Journal of Nuclear Medicine, 41, 149–160. PubMed

Strauss, S. H. , & Tsai, C.‐H. (1988). Ribosomal gene number variability in Douglas‐Fir. Journal of Heredity, 79, 453–458. 10.1093/oxfordjournals.jhered.a110550 DOI

Symonová, R. (2019). Integrative rDNAomics—Importance of the oldest repetitive fraction of the eukaryote genome. Genes (Basel), 10, 345. 10.3390/genes10050345 PubMed DOI PMC

The R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r‐project.org/

Torres‐Rosell, J. , Sunjevaric, I. , De Piccoli, G. , Sacher, M. , Eckert‐Boulet, N. , Reid, R. , Jentsch, S. , Rothstein, R. , Aragón, L. , & Lisby, M. (2007). The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biology, 9(8), 923–931. 10.1038/ncb1619 PubMed DOI

Untergasser, A. , Cutcutache, I. , Koressaar, T. , Ye, J. , Faircloth, B. C. , Remm, M. , & Rozen, S. G. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Research, 40, e115. 10.1093/nar/gks596 PubMed DOI PMC

Vaissière, T. , Sawan, C. , & Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research, 659, 40–48. 10.1016/j.mrrev.2008.02.004 PubMed DOI

van Cann, J. (2019). Intergenerational responses to a changing environment: Maternal and paternal early life shape fitness components in the bank vole. University of Jyväskylä.

van der Maarel, S. M. , & Frants, R. R. (2005). The D4Z4 repeat‐mediated pathogenesis of facioscapulohumeral muscular dystrophy. American Journal of Human Genetics, 76, 375–386. 10.1086/428361 PubMed DOI PMC

Vyskot, B. , Reich, J. , Fajkus, J. , Bezdek, M. , & Soska, J. (1991). Genome modifications in protoplast‐derived tobacco plants: Contents of repetitive DNA sequences. Biologia Plantarum, 33, 448–454. 10.1007/BF02897717 DOI

Wang, M. , & Lemos, B. (2017). Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genetics, 13, e1006994. 10.1371/journal.pgen.1006994 PubMed DOI PMC

Ward, J. F. (1988). DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Progress in Nucleic Acid Research and Molecular Biology, 35, 95–125. PubMed

Weider, L. J. , Elser, J. J. , Crease, T. J. , Mateos, M. , Cotner, J. B. , & Markow, T. A. (2005). The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms. Annual Review of Ecology Evolution and Systematics, 36, 219–242. 10.1146/annurev.ecolsys.36.102003.152620 DOI

White, T. A. , Lundy, M. G. , Montgomery, W. I. , Montgomery, S. , Perkins, S. E. , Lawton, C. , Meehan, J. M. , Hayden, T. J. , Heckel, G. , Reid, N. , & Searle, J. B. (2012). Range expansion in an invasive small mammal: Influence of life‐history and habitat quality. Biological Invasions, 14, 2203–2215. 10.1007/s10530-012-0225-x DOI

Xu, B. , Li, H. , Perry, J. M. , Singh, V. P. , Unruh, J. , Yu, Z. , Zakari, M. , McDowell, W. , Li, L. , & Gerton, J. L. (2017). Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genetics, 13, 1–25. 10.1371/journal.pgen.1006771 PubMed DOI PMC

Yakes, F. M. , & Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 94, 514–519. 10.1073/pnas.94.2.514 PubMed DOI PMC

Yan, S.‐J. , Lim, S. J. , Shi, S. , Dutta, P. , & Li, W. X. (2011). Unphosphorylated STAT and heterochromatin protect genome stability. The FASEB Journal, 25, 232–241. 10.1096/fj.10-169367 PubMed DOI PMC

Yuan, H.‐X.‐X. , Xiong, Y. , & Guan, K.‐L.‐L. (2013). Nutrient sensing, metabolism, and cell growth control. Molecular Cell, 49, 379–387. 10.1016/j.molcel.2013.01.019 PubMed DOI PMC

Zhang, X. , Ye, C. , Sun, F. , Wei, W. , Hu, B. , & Wang, J. (2016). Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation. PLoS One, 11, e0155725. 10.1371/journal.pone.0155725 PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.1zcrjdfrt

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...