Fragmentation of nucleoli in senescent cancer cells is associated with increased levels of polyadenylated transcripts derived from noncoding regions of rDNA units
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40549171
DOI
10.1007/s00249-025-01773-9
PII: 10.1007/s00249-025-01773-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer cell, Irradiation, Nucleolus, Senescence, rDNA,
- Publikační typ
- časopisecké články MeSH
In this study, we investigated the behavior of rDNA loci in senescent MCF-7 mammary cancer cells induced by gamma irradiation. To analyze changes in nucleolar structure we used rDNA-FISH and immunohistochemical staining with fibrillarin and UBF transcription factor. The expression levels of rDNAs and nucleolar proteins were determined by RNA-seq of total and poly-A libraries. The cytological and molecular parameters of nucleoli were monitored throughout the 7-day interval following irradiation. Senescent cells exhibited a higher proportion of smaller nucleoli as compared to cycling cells, indicating nucleolar fragmentation. The rDNA copy number and expression of rDNA variants remained stable in cycling and senescent cells. However, the levels of polyadenylated rRNA species derived from external (5'ETS) and internal (ITS1) rDNA spacers tend to increase (c.2 fold) following irradiation. At the protein level, senescent cells showed decreased levels of fibrillarin and UBF transcription factor while localization of both proteins in the nucleolus was not impaired. We conclude that withdrawal from cell cycle does not change expression patterns of rDNA variants. However, defects in rRNA processing may lead to fragmentation of nucleoli in senescent cells.
Zobrazit více v PubMed
An W, Yan Y, Ye K (2024) High resolution landscape of ribosomal RNA processing and surveillance. Nucl Acids Res 52:10630–10644. https://doi.org/10.1093/nar/gkae606 PubMed DOI PMC
Blanchard SC, Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Vincent TC, Wasserman MR, Amaya JLA, Terry DS (2019) Endogenously encoded ribosomal RNA sequence variation within the assemble ribosome can regulate stress response gene expression and phenotype. Biophys J 116:12a–12a. https://doi.org/10.1016/j.bpj.2018.11.106 DOI
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC
Bravata V, Minafra L, Russo G, Forte GI, Cammarata FP, Ripamonti M, Casarino C, Augello G, Costantini F, Barbieri G, Messa C, Gilardi MC (2015) High-dose ionizing radiation regulates gene expression changes in the MCF7 breast cancer cell line. Anticancer Res 35:2577–2591 PubMed
Buchwalter A, Hetzer MW (2017) Nucleolar expansion and elevated protein translation in premature aging. Nat Commun. https://doi.org/10.1038/s41467-017-00322-z PubMed DOI PMC
Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N, Sedivy JM (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256. https://doi.org/10.1111/acel.12047 PubMed DOI
Chan PK, Aldrich M, Busch H (1985) Alterations in immunolocalization of the phosphoprotein B23 in HeLa cells during serum starvation. Exp Cell Res 161:101–110. https://doi.org/10.1016/0014-4827(85)90494-x PubMed DOI
Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2007) Distinct structure, organization and mechanics of the nuclear lamina network in the premature aging disease Hutchinson-Gilford Progeria Syndrome. Biophys J. https://doi.org/10.1073/pnas.0601058103 DOI
Franek M, Kovarikova A, Bartova E, Kozubek S (2016) Nucleolar reorganization upon site-specific double-strand break induction. JHC 64:669–686. https://doi.org/10.1369/0022155416668505 DOI
Ganley AR, Kobayashi T (2014) Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 14:49–59. https://doi.org/10.1111/1567-1364.12133 PubMed DOI
Ganley AR, Ide S, Saka K, Kobayashi T (2009) The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol Cell 35:683–693. https://doi.org/10.1016/j.molcel.2009.07.012 PubMed DOI
Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Bio 4:641–649. https://doi.org/10.1038/nrm1171 DOI
Hall AN, Turner TN, Queitsch C (2021) Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Rep 11:449. https://doi.org/10.1038/s41598-020-80049-y PubMed DOI PMC
Jo M, Kim S, Park J, Chang YT, Gwon Y (2024) Reduced dynamicity and increased high-order protein assemblies in dense fibrillar component of the nucleolus under cellular senescence. Redox Biol 75:103279. https://doi.org/10.1016/j.redox.2024.103279 PubMed DOI PMC
Kasselimi E, Pefani D-E, Taraviras S, Lygerou Z (2022) Ribosomal DNA and the nucleolus at the heart of aging. TIBS 47:328–341. https://doi.org/10.1016/j.tibs.2021.12.007 PubMed DOI
Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, Jungmichel S, Toledo LI, Fink D, Rask MB, Grofte M, Lukas C, Nielsen ML, Smerdon SJ, Lukas J, Stucki M (2014) The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol 16:792–803. https://doi.org/10.1038/ncb3007 PubMed DOI PMC
Liu Y, Liang S, Tartakoff AM (1996) Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export. EMBO J 15:6750–6757 PubMed DOI PMC
Lukasova E, Kovarik A, Bacikova A, Falk M, Kozubek S (2017) Loss of lamin B receptor is necessary to induce cellular senescence. Biochem J 474:281–300. https://doi.org/10.1042/Bcj20160459 PubMed DOI
Lukasova E, Kovarik A, Kozubek S (2018) Consequences of lamin B1 and lamin B receptor downregulation in senescence. Cells-Basel. https://doi.org/10.3390/cells7020011 DOI
Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzalez E, Vendrell JA, Hacot S, Mertani HC, Albaret MA, Bourdon JC, Jordan L, Thompson A, Tafer Y, Cong R, Bouvet P, Saurin JC, Catez F, Prats AC, Puisieux A, Diaz JJ (2013) p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24:318–330. https://doi.org/10.1016/j.ccr.2013.08.013 PubMed DOI PMC
Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4:1036–1038. https://doi.org/10.4161/cc.4.8.1925 PubMed DOI
Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391. https://doi.org/10.1038/sj.onc.1209883 PubMed DOI
Mayer C, Schmitz KM, Li JW, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361. https://doi.org/10.1016/j.molcel.2006.03.028 PubMed DOI
Misteli T, Scaffidi P (2005) Genome instability in progeria: when repair gets old. Nat Med 11:718–719. https://doi.org/10.1038/nm0705-718 PubMed DOI
Popov A, Smirnov E, Kovacik L, Raska O, Hagen G, Stixova L, Raska I (2013) Duration of the first steps of the human rRNA processing. Nucleus 4:134–141. https://doi.org/10.4161/nucl.23985 PubMed DOI PMC
Sanij E, Hannan RD (2009) The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics 4:374–382. https://doi.org/10.4161/epi.4.6.9449 PubMed DOI
Slomovic S, Laufer D, Geiger D, Schuster G (2006) Polyadenylation of ribosomal RNA in human cells. Nucl Acids Res 34:2966–2975. https://doi.org/10.1093/nar/gkl357 PubMed DOI PMC
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598. https://doi.org/10.1016/j.cell.2013.01.009 PubMed DOI
Stixová L, Komurková D, Kovaríková AS, Bártová E (2019) UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res 27:41–55. https://doi.org/10.1007/s10577-018-9596-x PubMed DOI
Symonova R (2019) Integrative rDNAomics-importance of the oldest repetitive fraction of the eukaryote genome. Genes-Basel. https://doi.org/10.3390/genes10050345 PubMed DOI PMC
Szaflarski W, Lesniczak-Staszak M, Sowinski M, Ojha S, Aulas A, Dave D, Malla S, Anderson P, Ivanov P, Lyons SM (2022) Early rRNA processing is a stress-dependent regulatory event whose inhibition maintains nucleolar integrity. Nucl Acids Res 50:1033–1051. https://doi.org/10.1093/nar/gkab1231 PubMed DOI
Tiku V, Antebi A (2018) Nucleolar function in lifespan regulation. Trends Cell Biol 28:662–672. https://doi.org/10.1016/j.tcb.2018.03.007 PubMed DOI
van Sluis M, van Vuuren C, Mangan H, McStay B (2020) NORs on human acrocentric chromosome p-arms are active by default and can associate with nucleoli independently of rDNA. Proc Natl Acad Sci USA 117:10368–10377. https://doi.org/10.1073/pnas.2001812117 PubMed DOI PMC
Watase GJ, Yamashita YM (2024) RNA polymerase II-mediated rDNA transcription mediates rDNA copy number expansion in Drosophila. PLoS Genet 20:e1011136. https://doi.org/10.1371/journal.pgen.1011136 PubMed DOI PMC
Yao RW, Xu G, Wang Y, Shan L, Luan PF, Wang Y, Wu M, Yang LZ, Xing YH, Yang L, Chen LL (2019) Nascent Pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol Cell 76(767–783):e711. https://doi.org/10.1016/j.molcel.2019.08.014 DOI
Zatsepina OV, Voronkova LN, Sakharov VN, Chentsov YS (1989) Ultrastructural changes in nucleoli and fibrillar centers under the effect of local ultraviolet microbeam irradiation of interphase culture cells. Exp Cell Res 181:94–104. https://doi.org/10.1016/0014-4827(89)90185-7 PubMed DOI
Zhang X, Li W, Sun S, Liu Y (2024) Advances in the structure and function of the nucleolar protein fibrillarin. Front Cell Dev Biol 12:1494631. https://doi.org/10.3389/fcell.2024.1494631 PubMed DOI PMC