Influence of light on carbon utilization in aerobic anoxygenic phototrophs

. 2012 Oct ; 78 (20) : 7414-9. [epub] 20120810

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22885759

Aerobic anoxygenic phototrophs contain photosynthetic reaction centers composed of bacteriochlorophyll. These organisms are photoheterotrophs, as they require organic carbon substrates for their growth whereas light-derived energy has only an auxiliary function. To establish the contribution of light energy to their metabolism, we grew the phototrophic strain Erythrobacter sp. NAP1 in a carbon-limited chemostat regimen on defined carbon sources (glutamate, pyruvate, acetate, and glucose) under conditions of different light intensities. When grown in a light-dark cycle, these bacteria accumulated 25% to 110% more biomass in terms of carbon than cultures grown in the dark. Cultures grown on glutamate accumulated the most biomass at moderate light intensities of 50 to 150 μmol m(-2) s(-1) but were inhibited at higher light intensities. In the case of pyruvate, we did not find any inhibition of growth by high irradiance. The extent of anaplerotic carbon fixation was detemined by radioactive bicarbonate incorporation assays. While the carboxylation activity provided 4% to 11% of the cellular carbon in the pyruvate-grown culture, in the glutamate-grown cells it provided only approximately 1% of the carbon. Additionally, we tested the effect of light on respiration and photosynthetic electron flow. With increasing light intensity, respiration decreased to approximately 25% of its dark value and was replaced by photophosphorylation. The additional energy from light allows the aerobic anoxygenic phototrophs to accumulate the supplied organic carbon which would otherwise be respired. The higher efficiency of organic carbon utilization may provide an important competitive advantage during growth under carbon-limited conditions.

Zobrazit více v PubMed

Biebl H, Wagner-Dobler I. 2006. Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regiment and starvation. Proc. Biochem. 41:2153–2159

Candela M, Zaccherini E, Zannoni D. 2001. Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch. Microbiol. 175:168–177 PubMed

Cottrell MT, Mannio A, Kirchman DL. 2006. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and North Pacific gyre. Appl. Environ. Microbiol. 72:557–564 PubMed PMC

Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V. 2010. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ. Microbiol. Rep. 2:651–656 PubMed

Del Giorgio PA, Cole JJ, Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151

Del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29:503–541

Gorlenko VM, et al. 2010. Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal region). Microbiologiya 79:390–401

Harashima K, Shiba T, Totsuka T, Simidu U, Taga N. 1978. Occurrence of bacteriochlorophyll a in strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42:1627–1628

Harashima K, Nakagawa M, Murata N. 1982. Photochemical activities of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol. 23:185–193

Harashima K, Kawazoe K, Yoshida I, Kamata H. 1987. Light stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol. 28:365–374

Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N. 2000. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int. J. Syst. Evol. Microbiol. 50:1539–1546 PubMed

Jiao N, et al. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 9:3091–3099 PubMed

Kim K, et al. 2007. Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int. J. Syst. Evol. Microbiol. 57:1527–1534 PubMed

Kishimoto N. 1995. Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphillium rubrum. FEMS Microbiol. Ecol. 16:291–296

Koblízek M, et al. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 180:327–338 PubMed

Koblízek M, Mlčoušková J, Kolber ZS, Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch. Microbiol. 192:41–49 PubMed

Koblížek M, et al. 2011. Role of photoheterotrophic bacteria in the marine carbon cycle, p 49–51 In Jiao N, Azam F, Sanders S. (ed), Microbial carbon pump in the ocean. Science/AAAS, Washington, DC

Koblížek M, et al. 2011. Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1. J. Bacteriol. 193:5881–5882 PubMed PMC

Kolber ZS, Prášil O, Falkowski PG. 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1367:88–106 PubMed

Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG. 2000. Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179 PubMed

Kolber ZS, et al. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 PubMed

Labrenz M, et al. 1999. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int. J. Syst. Bacteriol. 49:137–147 PubMed

Masín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10:1988–1996 PubMed

Medová H, et al. 2011. High abundance of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol. Ecol. 76:393–400 PubMed

Okamura K, Mitsumori F, Ito O, Takamiya KI, Nishimura M. 1986. Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. J. Bacteriol. 168:1142–1146 PubMed PMC

Permentier HP, et al. 2000. Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth. Res. 64:27–39 PubMed

Rathgeber C, Alric J, Hughes E, Vermeglio A, Yurkov V. 2012. The photosynthetic apparatus and photoinduced electron transfer in the aerobic phototrophic bacteria Roseicyclus mahoneyensis and Porphyrobacter meromictius. Photosynth. Res. 110:193–203 PubMed

Salka I, Cuperova Z, Masin M, Koblizek M, Grossart HP. 2011. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ. Microbiol. 13:2865–2875 PubMed

Sato K. 1978. Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM1. FEBS Lett. 85:207–210 PubMed

Shiba T. 1984. Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. Och 114. J. Gen. Appl. Microbiol. 30:239–244

Shioi Y. 1986. Growth characteristics and substrate specificity of aerobic photosynthetic bacterium Erythrobacter sp. (OCh 114). Plant Cell Physiol. 27:567–572

Spring S, Lunsdorf H, Fuchs BM, Tindall BJ. 2009. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4:e4866 doi:10.1371/journal.pone.0004866 PubMed DOI PMC

Swingley WD, et al. 2007. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J. Bacteriol. 189:683–690 PubMed PMC

Tang K, Feng X, Tang YJ, Blankenship R. 2009. Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh 114. PLoS One 4:e7233 doi:10.1371/journal.pone.0007233 PubMed DOI PMC

Yurkov V, Csotonyi T. 2009. New light on aerobic anoxygenic phototrophs, p 31–55 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria, vol 28 Springer Verlag, Dordrecht, The Netherlands

Yurkov V, van Gemerden H. 1993. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 159:84–89

Yutin N, et al. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol. 9:1464–1475 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon

. 2024 Jun 17 ; 100 (7) : .

Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre

. 2024 Apr 17 ; 90 (4) : e0003224. [epub] 20240329

Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake

. 2023 Feb ; 15 (1) : 60-71. [epub] 20221212

A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems

. 2022 Dec 13 ; 119 (50) : e2211018119. [epub] 20221205

Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

. 2022 Apr ; 16 (4) : 1046-1054. [epub] 20211120

Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes

. 2021 Mar 16 ; 6 (2) : . [epub] 20210316

Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium

. 2020 Dec 22 ; 5 (6) : . [epub] 20201222

Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment

. 2020 Jul 01 ; 5 (4) : . [epub] 20200701

Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov

. 2019 Sep ; 64 (5) : 705-710. [epub] 20191106

Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria

. 2017 Oct ; 11 (10) : 2391-2393. [epub] 20170523

The variability of light-harvesting complexes in aerobic anoxygenic phototrophs

. 2016 Apr ; 128 (1) : 35-43. [epub] 20151019

Seasonal changes of microbial communities in two shallow peat bog lakes

. 2015 Mar ; 60 (2) : 165-75. [epub] 20141021

Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

. 2014 May 27 ; 111 (21) : 7795-800. [epub] 20140512

Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes

. 2013 Oct ; 79 (20) : 6439-46. [epub] 20130816

Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria

. 2013 Apr ; 79 (8) : 2596-604. [epub] 20130208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...