Influence of light on carbon utilization in aerobic anoxygenic phototrophs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22885759
PubMed Central
PMC3457121
DOI
10.1128/aem.01747-12
PII: AEM.01747-12
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- biomasa MeSH
- fototrofní procesy * MeSH
- hydrogenuhličitany metabolismus MeSH
- izotopové značení MeSH
- izotopy uhlíku metabolismus MeSH
- koloběh uhlíku MeSH
- kultivační média chemie MeSH
- pyruváty metabolismus MeSH
- Sphingomonadaceae metabolismus účinky záření MeSH
- světlo * MeSH
- tma MeSH
- transport elektronů MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogenuhličitany MeSH
- izotopy uhlíku MeSH
- kultivační média MeSH
- pyruváty MeSH
- uhlík MeSH
Aerobic anoxygenic phototrophs contain photosynthetic reaction centers composed of bacteriochlorophyll. These organisms are photoheterotrophs, as they require organic carbon substrates for their growth whereas light-derived energy has only an auxiliary function. To establish the contribution of light energy to their metabolism, we grew the phototrophic strain Erythrobacter sp. NAP1 in a carbon-limited chemostat regimen on defined carbon sources (glutamate, pyruvate, acetate, and glucose) under conditions of different light intensities. When grown in a light-dark cycle, these bacteria accumulated 25% to 110% more biomass in terms of carbon than cultures grown in the dark. Cultures grown on glutamate accumulated the most biomass at moderate light intensities of 50 to 150 μmol m(-2) s(-1) but were inhibited at higher light intensities. In the case of pyruvate, we did not find any inhibition of growth by high irradiance. The extent of anaplerotic carbon fixation was detemined by radioactive bicarbonate incorporation assays. While the carboxylation activity provided 4% to 11% of the cellular carbon in the pyruvate-grown culture, in the glutamate-grown cells it provided only approximately 1% of the carbon. Additionally, we tested the effect of light on respiration and photosynthetic electron flow. With increasing light intensity, respiration decreased to approximately 25% of its dark value and was replaced by photophosphorylation. The additional energy from light allows the aerobic anoxygenic phototrophs to accumulate the supplied organic carbon which would otherwise be respired. The higher efficiency of organic carbon utilization may provide an important competitive advantage during growth under carbon-limited conditions.
Zobrazit více v PubMed
Biebl H, Wagner-Dobler I. 2006. Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regiment and starvation. Proc. Biochem. 41:2153–2159
Candela M, Zaccherini E, Zannoni D. 2001. Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch. Microbiol. 175:168–177 PubMed
Cottrell MT, Mannio A, Kirchman DL. 2006. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and North Pacific gyre. Appl. Environ. Microbiol. 72:557–564 PubMed PMC
Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V. 2010. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ. Microbiol. Rep. 2:651–656 PubMed
Del Giorgio PA, Cole JJ, Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151
Del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29:503–541
Gorlenko VM, et al. 2010. Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal region). Microbiologiya 79:390–401
Harashima K, Shiba T, Totsuka T, Simidu U, Taga N. 1978. Occurrence of bacteriochlorophyll a in strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42:1627–1628
Harashima K, Nakagawa M, Murata N. 1982. Photochemical activities of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol. 23:185–193
Harashima K, Kawazoe K, Yoshida I, Kamata H. 1987. Light stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol. 28:365–374
Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N. 2000. Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int. J. Syst. Evol. Microbiol. 50:1539–1546 PubMed
Jiao N, et al. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 9:3091–3099 PubMed
Kim K, et al. 2007. Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int. J. Syst. Evol. Microbiol. 57:1527–1534 PubMed
Kishimoto N. 1995. Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphillium rubrum. FEMS Microbiol. Ecol. 16:291–296
Koblízek M, et al. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 180:327–338 PubMed
Koblízek M, Mlčoušková J, Kolber ZS, Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch. Microbiol. 192:41–49 PubMed
Koblížek M, et al. 2011. Role of photoheterotrophic bacteria in the marine carbon cycle, p 49–51 In Jiao N, Azam F, Sanders S. (ed), Microbial carbon pump in the ocean. Science/AAAS, Washington, DC
Koblížek M, et al. 2011. Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1. J. Bacteriol. 193:5881–5882 PubMed PMC
Kolber ZS, Prášil O, Falkowski PG. 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1367:88–106 PubMed
Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG. 2000. Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179 PubMed
Kolber ZS, et al. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 PubMed
Labrenz M, et al. 1999. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int. J. Syst. Bacteriol. 49:137–147 PubMed
Masín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10:1988–1996 PubMed
Medová H, et al. 2011. High abundance of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol. Ecol. 76:393–400 PubMed
Okamura K, Mitsumori F, Ito O, Takamiya KI, Nishimura M. 1986. Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. J. Bacteriol. 168:1142–1146 PubMed PMC
Permentier HP, et al. 2000. Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth. Res. 64:27–39 PubMed
Rathgeber C, Alric J, Hughes E, Vermeglio A, Yurkov V. 2012. The photosynthetic apparatus and photoinduced electron transfer in the aerobic phototrophic bacteria Roseicyclus mahoneyensis and Porphyrobacter meromictius. Photosynth. Res. 110:193–203 PubMed
Salka I, Cuperova Z, Masin M, Koblizek M, Grossart HP. 2011. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ. Microbiol. 13:2865–2875 PubMed
Sato K. 1978. Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM1. FEBS Lett. 85:207–210 PubMed
Shiba T. 1984. Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. Och 114. J. Gen. Appl. Microbiol. 30:239–244
Shioi Y. 1986. Growth characteristics and substrate specificity of aerobic photosynthetic bacterium Erythrobacter sp. (OCh 114). Plant Cell Physiol. 27:567–572
Spring S, Lunsdorf H, Fuchs BM, Tindall BJ. 2009. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4:e4866 doi:10.1371/journal.pone.0004866 PubMed DOI PMC
Swingley WD, et al. 2007. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J. Bacteriol. 189:683–690 PubMed PMC
Tang K, Feng X, Tang YJ, Blankenship R. 2009. Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh 114. PLoS One 4:e7233 doi:10.1371/journal.pone.0007233 PubMed DOI PMC
Yurkov V, Csotonyi T. 2009. New light on aerobic anoxygenic phototrophs, p 31–55 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria, vol 28 Springer Verlag, Dordrecht, The Netherlands
Yurkov V, van Gemerden H. 1993. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 159:84–89
Yutin N, et al. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol. 9:1464–1475 PubMed
Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes
Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium
Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov
Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
The variability of light-harvesting complexes in aerobic anoxygenic phototrophs
Seasonal changes of microbial communities in two shallow peat bog lakes
Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes