Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21952547
PubMed Central
PMC3187229
DOI
10.1128/jb.05845-11
PII: 193/20/5881
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins genetics MeSH
- Genome, Bacterial * MeSH
- Molecular Sequence Data MeSH
- Seawater microbiology MeSH
- Base Sequence MeSH
- Sphingomonadaceae classification genetics isolation & purification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
Here we report the full genome sequence of marine phototrophic bacterium Erythrobacter sp. strain NAP1. The 3.3-Mb genome contains a full set of photosynthetic genes organized in one 38.9-kb cluster; however, it does not contain genes for CO(2) or N(2) fixation, thereby confirming that the organism is a photoheterotroph.
See more in PubMed
Goldberg S. M., et al. 2006. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. U. S. A. 103:11240–11245 PubMed PMC
Harashima K., Shiba T., Totsuka T., Simidu U., Taga N. 1978. Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42:1627–1628
Koblížek M., et al. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 180:327–338 PubMed
Koblížek M., Mlčoušková J., Kolber Z., Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch. Microbiol. 192:41–49 PubMed
Koblížek M. 2011. Role of photoheterotrophic bacteria in the marine carbon cycle, p. 49–51 In Jiao N., Azam F., Sanders S. (ed.), Microbial carbon pump in the ocean. Science/AAAS, Washington, DC
Kolber Z. S., Van Dover C. L., Niederman R. A., Falkowski P. G. 2000. Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179 PubMed
Kolber Z. S., et al. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 PubMed
Oh H.-M., Giovannoni S. J., Ferriera S., Johnson J., Cho J.-C. 2009. Complete genome sequence of Erythrobacter litoralis HTCC2594. J. Bacteriol. 191:2419–2420 PubMed PMC
Shiba T., Simidu U., Taga N. 1979. Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 38:43–45 PubMed PMC
Shiba T., Simidu U. 1982. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol. 32:211–217
Yurkov V. V., Csotonyi J. T. 2009. New light on aerobic anoxygenic phototrophs, p. 31–55 In Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T. (ed.), The purple phototrophic bacteria. Springer Verlag, Dordrecht, The Netherlands
The variability of light-harvesting complexes in aerobic anoxygenic phototrophs
Influence of light on carbon utilization in aerobic anoxygenic phototrophs