The variability of light-harvesting complexes in aerobic anoxygenic phototrophs
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26482589
DOI
10.1007/s11120-015-0197-7
PII: 10.1007/s11120-015-0197-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterial photosynthesis, Bacteriochlorophyll, Photosynthetic unit size, Purple non-sulfur bacteria, Reaction center core complex,
- MeSH
- aerobióza MeSH
- Alphaproteobacteria chemie metabolismus MeSH
- bakteriochlorofyly metabolismus MeSH
- fotosyntetické reakční centrum - proteinové komplexy chemie metabolismus MeSH
- fototrofní procesy MeSH
- Gammaproteobacteria chemie metabolismus MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriochlorofyly MeSH
- fotosyntetické reakční centrum - proteinové komplexy MeSH
- světlosběrné proteinové komplexy MeSH
Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140-1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC-LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.
Zobrazit více v PubMed
J Phys Chem B. 2013 Sep 26;117(38):10987-99 PubMed
J Bacteriol. 2011 Oct;193(20):5881-2 PubMed
Appl Environ Microbiol. 2012 Oct;78(20):7414-9 PubMed
Biochim Biophys Acta. 2011 May;1807(5):518-28 PubMed
J Biol Chem. 2004 May 14;279(20):21327-33 PubMed
Proc Natl Acad Sci U S A. 1998 May 26;95(11):5935-41 PubMed
Arch Microbiol. 2010 Jan;192(1):41-9 PubMed
J Bacteriol. 1999 Jul;181(13):3869-79 PubMed
Nature. 2014 Apr 10;508(7495):196-7 PubMed
PLoS One. 2009;4(3):e4866 PubMed
J Mol Biol. 1997 Jan 17;265(2):107-11 PubMed
Photosynth Res. 2004;80(1-3):173-9 PubMed
Mol Microbiol. 1991 Jun;5(6):1459-68 PubMed
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:449-57 PubMed
Photochem Photobiol. 1972 Feb;15(2):209-25 PubMed
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2891-6 PubMed
EMBO J. 1995 Feb 15;14(4):631-8 PubMed
Arch Microbiol. 2003 Nov;180(5):327-38 PubMed
Biochim Biophys Acta. 1979 Sep 11;547(3):417-28 PubMed
J Cell Comp Physiol. 1957 Feb;49(1):25-68 PubMed
J Biol Chem. 2004 Jan 16;279(3):2063-8 PubMed
J Bioenerg. 1973;4(4):423-34 PubMed
Mikrobiologiia. 2008 Mar-Apr;77(2):241-54 PubMed
EMBO J. 1989 Aug;8(8):2149-70 PubMed
Appl Environ Microbiol. 2006 Jan;72(1):557-64 PubMed
Photosynth Res. 1995 Nov;46(1-2):347-52 PubMed
Biochim Biophys Acta. 1963 Nov 29;75:312-23 PubMed
Science. 2001 Jun 29;292(5526):2492-5 PubMed
J Gen Physiol. 1932 Mar 20;15(4):391-420 PubMed
Environ Microbiol Rep. 2013 Apr;5(2):188-99 PubMed
Environ Microbiol. 2008 Aug;10(8):1988-96 PubMed
Biochemistry. 2013 Oct 29;52(43):7575-85 PubMed
J Chromatogr A. 2001 Feb 23;910(1):31-49 PubMed
Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre
Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans