The variability of light-harvesting complexes in aerobic anoxygenic phototrophs

. 2016 Apr ; 128 (1) : 35-43. [epub] 20151019

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26482589
Odkazy

PubMed 26482589
DOI 10.1007/s11120-015-0197-7
PII: 10.1007/s11120-015-0197-7
Knihovny.cz E-zdroje

Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140-1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC-LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.

Zobrazit více v PubMed

J Phys Chem B. 2013 Sep 26;117(38):10987-99 PubMed

J Bacteriol. 2011 Oct;193(20):5881-2 PubMed

Appl Environ Microbiol. 2012 Oct;78(20):7414-9 PubMed

Biochim Biophys Acta. 2011 May;1807(5):518-28 PubMed

J Biol Chem. 2004 May 14;279(20):21327-33 PubMed

Proc Natl Acad Sci U S A. 1998 May 26;95(11):5935-41 PubMed

Arch Microbiol. 2010 Jan;192(1):41-9 PubMed

J Bacteriol. 1999 Jul;181(13):3869-79 PubMed

Nature. 2014 Apr 10;508(7495):196-7 PubMed

PLoS One. 2009;4(3):e4866 PubMed

J Mol Biol. 1997 Jan 17;265(2):107-11 PubMed

Photosynth Res. 2004;80(1-3):173-9 PubMed

Mol Microbiol. 1991 Jun;5(6):1459-68 PubMed

Int J Syst Bacteriol. 1999 Apr;49 Pt 2:449-57 PubMed

Photochem Photobiol. 1972 Feb;15(2):209-25 PubMed

Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2891-6 PubMed

EMBO J. 1995 Feb 15;14(4):631-8 PubMed

Arch Microbiol. 2003 Nov;180(5):327-38 PubMed

Biochim Biophys Acta. 1979 Sep 11;547(3):417-28 PubMed

J Cell Comp Physiol. 1957 Feb;49(1):25-68 PubMed

J Biol Chem. 2004 Jan 16;279(3):2063-8 PubMed

J Bioenerg. 1973;4(4):423-34 PubMed

Mikrobiologiia. 2008 Mar-Apr;77(2):241-54 PubMed

EMBO J. 1989 Aug;8(8):2149-70 PubMed

Appl Environ Microbiol. 2006 Jan;72(1):557-64 PubMed

Photosynth Res. 1995 Nov;46(1-2):347-52 PubMed

Biochim Biophys Acta. 1963 Nov 29;75:312-23 PubMed

Science. 2001 Jun 29;292(5526):2492-5 PubMed

J Gen Physiol. 1932 Mar 20;15(4):391-420 PubMed

Environ Microbiol Rep. 2013 Apr;5(2):188-99 PubMed

Environ Microbiol. 2008 Aug;10(8):1988-96 PubMed

Biochemistry. 2013 Oct 29;52(43):7575-85 PubMed

J Chromatogr A. 2001 Feb 23;910(1):31-49 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...