A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer

. 2024 Mar 19 ; 9 (3) : e0131123. [epub] 20240220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38376261

Grantová podpora
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
CZ.02.1.01/0.0/0.0/15_003/0000441 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
GX19-28778X Grantová Agentura České Republiky (GAČR)
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
CZ.02.1.01/0.0/0.0/18_046/0016045 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)

During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.

Zobrazit více v PubMed

Thiel V, Tank M, Bryant DA. 2018. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 69:21–49. doi:10.1146/annurev-arplant-042817-040500 PubMed DOI

Gardiner AT, Nguyen-Phan TC, Cogdell RJ. 2020. A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria. Photosynth Res 145:83–96. doi:10.1007/s11120-020-00758-3 PubMed DOI PMC

Olson JM. 2006. Photosynthesis in the Archean era. Photosynth Res 88:109–117. doi:10.1007/s11120-006-9040-5 PubMed DOI

Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A-C, El Albani A. 2013. Oxygen dynamics in the aftermath of the great oxidation of earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741. doi:10.1073/pnas.1315570110 PubMed DOI PMC

Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915. doi:10.1098/rstb.2006.1838 PubMed DOI PMC

Cogdell RJ, Frank HA. 1987. How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895:63–79. doi:10.1016/s0304-4173(87)80008-3 PubMed DOI

Ziegelhoffer EC, Donohue TJ. 2009. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7:856–863. doi:10.1038/nrmicro2237 PubMed DOI PMC

Imhoff JF. 2014. The familiy chromatiaceae, p 151–178. In The prokaryotes: gammaproteobacteria

Cohen-Bazire G, Sistrom WR, Stanier RY. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68. doi:10.1002/jcp.1030490104 PubMed DOI

Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O’Gara J, Kaplan S. 1998. Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180:2801–2809. doi:10.1128/JB.180.11.2801-2809.1998 PubMed DOI PMC

Koblížek M. 2015. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. doi:10.1093/femsre/fuv032 PubMed DOI

Yurkov V, Hughes E. 2017. Aerobic anoxygenic phototrophs: four decades of mystery. In Hallenbeck PC (ed), Modern topics in the phototrophic prokaryotes. Springer.

Selyanin V, Hauruseu D, Koblížek M. 2016. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res 128:35–43. doi:10.1007/s11120-015-0197-7 PubMed DOI

Berghoff BA, Glaeser J, Nuss AM, Zobawa M, Lottspeich F, Klug G. 2011. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter. Environ Microbiol 13:775–791. doi:10.1111/j.1462-2920.2010.02381.x PubMed DOI

Iba K, Takamiya K. 1989. Action spectra for inhibition by light of accumulation of bacteriochlorophyll and carotenoid during aerobic growth of photosynthetic bacteria. Plant Cell Physiol 30:471–477. doi:10.1093/oxfordjournals.pcp.a077765 DOI

Koblízek M, Mlcousková J, Kolber Z, Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192:41–49. doi:10.1007/s00203-009-0529-0 PubMed DOI

Kopejtka K, Tomasch J, Kaftan D, Gardiner AT, Bína D, Gardian Z, Bellas C, Dröge A, Geffers R, Sommaruga R, Koblížek M. 2022. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc Natl Acad Sci U S A 119:e2211018119. doi:10.1073/pnas.2211018119 PubMed DOI PMC

Tinguely C, Paulméry M, Terrettaz C, Gonzalez D. 2023. Diurnal cycles drive rhythmic physiology and promote survival in facultative phototrophic bacteria. ISME Commun 3:125. doi:10.1038/s43705-023-00334-5 PubMed DOI PMC

Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I. 2011. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J 5:1957–1968. doi:10.1038/ismej.2011.68 PubMed DOI PMC

Spring S, Lünsdorf H, Fuchs BM, Tindall BJ. 2009. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4:e4866. doi:10.1371/journal.pone.0004866 PubMed DOI PMC

Fecskeová LK, Piwosz K, Hanusová M, Nedoma J, Znachor P, Koblížek M. 2019. Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep 9:18766. doi:10.1038/s41598-019-55210-x PubMed DOI PMC

Koblízek M, Masín M, Ras J, Poulton AJ, Prásil O. 2007. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9:2401–2406. doi:10.1111/j.1462-2920.2007.01354.x PubMed DOI

Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, Scholin CA, DeLong EF. 2014. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345:207–212. doi:10.1126/science.1252476 PubMed DOI

Dragnea V, Gonzalez-Gutierrez G, Bauer CE. 2022. Structural analyses of CrtJ and its B12-binding co-regulators SAerR and LAerR from the purple photosynthetic bacterium Rhodobacter capsulatus. Microorganisms 10:912. doi:10.3390/microorganisms10050912 PubMed DOI PMC

Imam S, Noguera DR, Donohue TJ. 2014. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet 10:e1004837. doi:10.1371/journal.pgen.1004837 PubMed DOI PMC

Winkler A, Heintz U, Lindner R, Reinstein J, Shoeman RL, Schlichting I. 2013. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression. Nat Struct Mol Biol 20:859–867. doi:10.1038/nsmb.2597 PubMed DOI PMC

Medová H, Koblížek M, Elster J, Nedbalová L. 2016. Abundance of aerobic anoxygenic bacteria in freshwater lakes on James Ross Island, Antarctic Peninsula. Antarct Sci 28:101–102. doi:10.1017/S0954102015000590 DOI

Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. 2017. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol 9:1950–1962. doi:10.1093/gbe/evx141 PubMed DOI PMC

Koblízek M, Béjà O, Bidigare RR, Christensen S, Benitez-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338. doi:10.1007/s00203-003-0596-6 PubMed DOI

Tramonti A, Nardella C, di Salvo ML, Barile A, D’Alessio F, de Crécy-Lagard V, Contestabile R. 2021. Knowns and unknowns of vitamin B6 metabolism in Escherichia coli. EcoSal Plus 9. doi:10.1128/ecosalplus.ESP-0004-2021 PubMed DOI PMC

Qian P, Gardiner AT, Šímová I, Naydenova K, Croll TI, Jackson PJ, Nupur, Kloz M, Čubáková P, Kuzma M, et al. . 2022. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem. Sci Adv 8:eabk3139. doi:10.1126/sciadv.abk3139 PubMed DOI PMC

Koblížek M, Dachev M, Bína D, Nupur, Piwosz K, Kaftan D. 2020. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobiol B 213:112085. doi:10.1016/j.jphotobiol.2020.112085 PubMed DOI

Blankenship RE. 2021. "Reaction centers and electron transport pathways in anoxygenic phototrophs", p 91–116. In Molecular mechanisms of photosynthesis. Wiley.

LaSarre B, Kysela DT, Stein BD, Ducret A, Brun YV, McKinlay JB, Harwood CS. 2018. Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in multiple genera of purple nonsulfur bacteria. mBio 9:e00780-18. doi:10.1128/mBio.00780-18 PubMed DOI PMC

Bill N, Tomasch J, Riemer A, Müller K, Kleist S, Schmidt-Hohagen K, Wagner-Döbler I, Schomburg D. 2017. Fixation of CO2 using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae. Environ Microbiol 19:2645–2660. doi:10.1111/1462-2920.13746 PubMed DOI

Braatsch S, Bernstein JR, Lessner F, Morgan J, Liao JC, Harwood CS, Beatty JT. 2006. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. Biochemistry 45:14441–14451. doi:10.1021/bi061074b PubMed DOI

Donohue TJ. 2019. Shedding light on a group IV (ECF11) alternative σ factor. Mol Microbiol 112:374–384. doi:10.1111/mmi.14280 PubMed DOI PMC

Kuzyk SB, Messner K, Plouffe J, Ma X, Wiens K, Yurkov V. 2023. Diverse aerobic anoxygenic phototrophs synthesize bacteriochlorophyll in oligotrophic rather than copiotrophic conditions, suggesting ecological niche. Environ Microbiol 25:2653–2665. doi:10.1111/1462-2920.16482 PubMed DOI

Correa-Llantén DN, Amenábar MJ, Blamey JM. 2012. Antioxidant capacity of novel pigments from an Antarctic bacterium. J Microbiol 50:374–379. doi:10.1007/s12275-012-2029-1 PubMed DOI

Galano A, Vargas R, Martínez A. 2010. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys 12:193–200. doi:10.1039/b917636e PubMed DOI

Nuss AM, Glaeser J, Berghoff BA, Klug G. 2010. Overlapping alternative sigma factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides. J Bacteriol 192:2613–2623. doi:10.1128/JB.01605-09 PubMed DOI PMC

Zeller T, Klug G. 2006. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93:259–266. doi:10.1007/s00114-006-0106-1 PubMed DOI

Li K, Hein S, Zou W, Klug G. 2004. The glutathione-glutaredoxin system in Rhodobacter capsulatus: part of a complex regulatory network controlling defense against oxidative stress. J Bacteriol 186:6800–6808. doi:10.1128/JB.186.20.6800-6808.2004 PubMed DOI PMC

Johnson LA, Hug LA. 2019. Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radic Biol Med 140:93–102. doi:10.1016/j.freeradbiomed.2019.03.032 PubMed DOI

Dubey AP, Pandey P, Mishra S, Gupta P, Tripathi AK. 2021. Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Research in microbiology 172:103875. doi:10.1016/j.resmic.2021.103875 PubMed DOI

Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800. doi:10.1073/pnas.1400295111 PubMed DOI PMC

Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit. doi:10.1002/0471142727.mb0204s56 PubMed DOI

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170 PubMed DOI PMC

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi:10.1371/journal.pcbi.1005595 PubMed DOI PMC

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51:D587–D592. doi:10.1093/nar/gkac963 PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 PubMed DOI

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219 PubMed DOI PMC

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454 PubMed DOI

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi:10.1007/BF01734359 PubMed DOI

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 PubMed DOI PMC

Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0 PubMed DOI

Burel A, Lavault M-T, Chevalier C, Gnaegi H, Prigent S, Mucciolo A, Dutertre S, Humbel BM, Guillaudeux T, Kolotuev I. 2018. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 145:dev160879. doi:10.1242/dev.160879 PubMed DOI

Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ. 2012. TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011. doi:10.1371/journal.pone.0038011 PubMed DOI PMC

Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. 2016. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol 14:e1002340. doi:10.1371/journal.pbio.1002340 PubMed DOI PMC

Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. doi:10.1006/jsbi.1996.0013 PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089 PubMed DOI PMC

Sader JE, Chon JWM, Mulvaney P. 1999. Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969. doi:10.1063/1.1150021 DOI

Kaftan D, Bína D, Koblížek M. 2019. Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosynth Res 142:181–193. doi:10.1007/s11120-019-00652-7 PubMed DOI PMC

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262 PubMed DOI

Pinto FL, Thapper A, Sontheim W, Lindblad P. 2009. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:1–8. doi:10.1186/1471-2199-10-79 PubMed DOI PMC

Kopejtka K, Tomasch J, Zeng Y, Selyanin V, Dachev M, Piwosz K, Tichý M, Bína D, Gardian Z, Bunk B, Brinkmann H, Geffers R, Sommaruga R, Koblížek M, Makhalanyane TP. 2020. Simultaneous presence of bacteriochlorophyll and xanthorhodopsin genes in a freshwater bacterium. mSystems 5:e01044-20. doi:10.1128/mSystems.01044-20 PubMed DOI PMC

Shishkin AA, Giannoukos G, Kucukural A, Ciulla D, Busby M, Surka C, Chen J, Bhattacharyya RP, Rudy RF, Patel MM, Novod N, Hung DT, Gnirke A, Garber M, Guttman M, Livny J. 2015. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat Methods 12:323–325. doi:10.1038/nmeth.3313 PubMed DOI PMC

Dudek CA, Jahn D. 2022. PRODORIC: state-of-the-art database of prokaryotic gene regulation. Nucleic Acids Res 50:D295–D302. doi:10.1093/nar/gkab1110 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...