A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36469764
PubMed Central
PMC9897461
DOI
10.1073/pnas.2211018119
Knihovny.cz E-zdroje
- Klíčová slova
- anoxygenic photosynthesis, bacteriochlorophyll a, dual phototrophy, light energy, xanthorhodopsin,
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriochlorofyly * chemie MeSH
- ekosystém MeSH
- fotosyntéza MeSH
- jezera * analýza MeSH
- protonové pumpy MeSH
- protony MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyly * MeSH
- protonové pumpy MeSH
- protony MeSH
- světlosběrné proteinové komplexy MeSH
Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.
Faculty of Science University of South Bohemia České Budějovice 37005 Czechia
Institute of Parasitology Biology Centre Czech Acad Sci České Budějovice 37005 Czechia
Institute of Plant Molecular Biology Biology Centre Czech Acad Sci České Budějovice 37005 Czechia
Research Group Genome Analytics Helmholtz Centre for Infection Research Braunschweig 38124 Germany
Zobrazit více v PubMed
Gardiner A. T., Nguyen-Phan T. C., Cogdell R. J., A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria. Photosynth. Res. 145, 83–96 (2020). PubMed PMC
Blankenship R. E., Early evolution of photosynthesis. Plant Physiol. 154, 434–438 (2010). PubMed PMC
Yurkov V. V., Csotonyi J. T., “New light on aerobic anoxygenic phototrophs” in The Purple Phototrophic Bacteria, Hunter C. N., Daldal F., , M. C. Thurnauer, Beatty J. T., Eds. (Advances in Photosynthesis and Respiration, Springer, 2009), vol. 28, pp. 31–55.
Koblížek M., Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol. Rev. 39, 854–870 (2015). PubMed
Kolber Z. S., et al. , Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001). PubMed
Gómez-Consarnau L., et al. , Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019). PubMed PMC
Gazulla C. R., et al. , Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environ. Microbiol. 24, 2222–2238 (2022). PubMed
Mašín M., Nedoma J., Pechar L., Koblížek M., Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10, 1988–1996 (2008). PubMed
Čuperová Z., Holzer E., Salka I., Sommaruga R., Koblížek M., Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl. Environ. Microbiol. 79, 6439–6446 (2013). PubMed PMC
Ferrera I., et al. , Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front. Microbiol. 8, 175 (2017). PubMed PMC
Pinhassi J., DeLong E. F., Béjà O., González J. M., Pedrós-Alió C., Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016). PubMed PMC
Balashov S. P., et al. , Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005). PubMed PMC
Kirchman D. L., Hanson T. E., Bioenergetics of photoheterotrophic bacteria in the oceans. Environ. Microbiol. Rep. 5, 188–199 (2013). PubMed
Oesterhelt D., Stoeckenius W., Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol. 233, 149–152 (1971). PubMed
Béjà O., et al. , Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000), 10.1126/science.289.5486.1902. PubMed DOI
Rusch D. B., et al. , The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007). PubMed PMC
Campbell B. J., Waidner L. A., Cottrell M. T., Kirchman D. L., Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ. Microbiol. 10, 99–109 (2008). PubMed
Frias-Lopez J., et al. , Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. U.S.A. 105, 3805–3810 (2008). PubMed PMC
Atamna-Ismaeel N., et al. , Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J. 2, 656–662 (2008). PubMed
Zeng Y., et al. , Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a high Arctic glacier. mBio 11, e02641-20 (2020). PubMed PMC
Kopejtka K., et al. , Simultaneous presence of bacteriochlorophyll and xanthorhodopsin genes in a freshwater bacterium. mSystems 5, 17 (2020). PubMed PMC
Kopejtka K., et al. , Characterization of the aerobic anoxygenic phototrophic bacterium Sphingomonas sp. AAP5. Microorganisms 9, 768 (2021). PubMed PMC
Bellas C. M., Sommaruga R., Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 1–14 (2021). PubMed PMC
Kovács Á. T., Rákhely G., Kovács K. L., The PpsR regulator family. Res. Microbiol. 156, 619–625 (2005). PubMed
Dubey A. P., Pandey P., Mishra S., Gupta P., Tripathi A. K., Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Res. Microbiol. 172, 103875 (2021). PubMed
Glantz S., et al. , Functional and topological diversity of LOV domain photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 113, 201509428 (2016). PubMed PMC
Nash A. I., et al. , Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 108, 9449–9454 (2011). PubMed PMC
Bína D., Litvin R., Vácha F., Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth. Res. 99, 115–125 (2009). PubMed
Lewis A., Spoonhower J. P., Perreault G. J., Observation of light emission from a rhodopsin. Nature 260, 675–678 (1976). PubMed
Balashov S. P., Imasheva E. S., Wang J. M., Lanyi J. K., Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 5, 2402–2414 (2008). PubMed PMC
Pérez M. T., Rofner C., Sommaruga R., Dissolved organic monomer partitioning among bacterial groups in two oligotrophic lakes. Environ. Microbiol. Rep. 7, 265–272 (2015). PubMed PMC
Harashima K., Shiba T., Totsuka T., Simidu U., Taga N., Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42, 1627–1628 (1978).
Hauruseu D., Koblížek M., Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl. Environ. Microbiol. 78, 7414–7419 (2012). PubMed PMC
Piwosz K., Villena-Alemany C., Mujakić I., Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. ISME J. 16, 1046–1054 (2021), 10.1038/s41396-021-01142-2. PubMed DOI PMC
Gómez-Consarnau L., et al. , Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007). PubMed
Lami R., Cottrell M. T., Campbell B. J., Kirchman D. L., Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. Environ. Microbiol. 11, 3201–3209 (2009). PubMed
Feng S., Powell S. M., Wilson R., Bowman J. P., Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent. ISME J. 7, 2206–2213 (2013). PubMed PMC
Sommaruga R., The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B 1–2, 35–42 (2001). PubMed
Felip M., Wille A., Sattler B., Psenner R., Microbial communities in the winter cover and the water column of an alpine lake: System connectivity and uncoupling. Aquat. Microb. Ecol. 29, 123–134 (2002).
Bertilsson S., et al. , The under-ice microbiome of seasonally frozen lakes. Limnol. Oceanogr. 58, 1998–2012 (2013).
Blumthaler M., Ambach W., Cede A., Staehelin J., Attenuation of erythemal effective irradiance by cloudiness at low and high altitude in the Alpine region. Photochem. Photobiol. 63, 193–196 (1996).
Yurkov V. V., van Gemerden H., Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 159, 84–89 (1993).
Tomasch J., Gohl R., Bunk B., Diez M. S., Wagner-Döbler I., Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J. 5, 1957–1968 (2011). PubMed PMC
Ottesen E. A., et al. , Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014), 10.1126/science.1252476. PubMed DOI
Kyndt J. A., Robertson S., Shoffstall I. B., Ramaley R. F., Meyer T. E., Genome sequence and characterization of a xanthorhodopsin-containing, aerobic anoxygenic phototrophic Rhodobacter species, isolated from mesophilic conditions at Yellowstone National Park. Microorganisms 10, 1169 (2022). PubMed PMC
Imhoff J. F., Rahn T., Künzel S., Neulinger S. C., Phylogeny of anoxygenic photosynthesis based on sequences of photosynthetic reaction center proteins and a key enzyme in bacteriochlorophyll biosynthesis, the chlorophyllide reductase. Microorganisms 7, 576 (2019). PubMed PMC
Zeng Y., Feng F., Medová H., Dean J., Koblížek M., Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. U.S.A. 111, 7795–7800 (2014). PubMed PMC
Sharma A. K., Spudich J. L., Doolittle W. F., Microbial rhodopsins: Functional versatility and genetic mobility. Trends Microbiol. 14, 463–469 (2006). PubMed
Tamames J., Puente-Sánchez F., SqueezeMeta, A highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349 (2019). PubMed PMC
Wu Y.-W., Simmons B. A., Singer S. W., MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). PubMed
Kang D. D., et al. , MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7, e7359 (2019). PubMed PMC
Sieber C. M. K., et al. , Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). PubMed PMC
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W., CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015). PubMed PMC
Thompson J. D., Higgins D. G., Gibson T. J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994). PubMed PMC
Saitou N., Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987). PubMed
Felsenstein J., Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981). PubMed
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). PubMed PMC
Tamura K., Nei M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993). PubMed
Tavare S. “Some probabilistic and statistical problems in the analysis of DNA sequences” in Some Mathematical Questions in Biology/DNA Sequence Analysis, Miura R. M., Ed. (AMS, 1986).
Pinto F., Thapper A., Sontheim W., Lindblad P., Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol. Biol. 10, 79 (2009). PubMed PMC
Livak K. J., Schmittgen T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001). PubMed
Shishkin A. A., et al. , Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015). PubMed PMC
Koblížek M., et al. , Utilization of light energy in phototrophic Gemmatimonadetes. J. Photochem. Photobiol. B 213, 112085 (2020). PubMed
Kaftan D., Bína D., Koblížek M., Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosynth. Res. 142, 181–193 (2019). PubMed PMC
Bína D., Litvín R., Vácha F., Šiffel P., New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth. Res. 88, 351–356 (2006). PubMed
Saccon F., et al. , A flexible LHCII structure allows for fine-tuning of excitation energy dissipation. SSRN Electron. J. (2020), 10.2139/ssrn.3600541. DOI