A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems

. 2022 Dec 13 ; 119 (50) : e2211018119. [epub] 20221205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36469764

Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.

Komentář v

PubMed

Zobrazit více v PubMed

Gardiner A. T., Nguyen-Phan T. C., Cogdell R. J., A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria. Photosynth. Res. 145, 83–96 (2020). PubMed PMC

Blankenship R. E., Early evolution of photosynthesis. Plant Physiol. 154, 434–438 (2010). PubMed PMC

Yurkov V. V., Csotonyi J. T., “New light on aerobic anoxygenic phototrophs” in The Purple Phototrophic Bacteria, Hunter C. N., Daldal F., , M. C. Thurnauer, Beatty J. T., Eds. (Advances in Photosynthesis and Respiration, Springer, 2009), vol. 28, pp. 31–55.

Koblížek M., Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol. Rev. 39, 854–870 (2015). PubMed

Kolber Z. S., et al. , Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001). PubMed

Gómez-Consarnau L., et al. , Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019). PubMed PMC

Gazulla C. R., et al. , Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environ. Microbiol. 24, 2222–2238 (2022). PubMed

Mašín M., Nedoma J., Pechar L., Koblížek M., Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10, 1988–1996 (2008). PubMed

Čuperová Z., Holzer E., Salka I., Sommaruga R., Koblížek M., Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl. Environ. Microbiol. 79, 6439–6446 (2013). PubMed PMC

Ferrera I., et al. , Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front. Microbiol. 8, 175 (2017). PubMed PMC

Pinhassi J., DeLong E. F., Béjà O., González J. M., Pedrós-Alió C., Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016). PubMed PMC

Balashov S. P., et al. , Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005). PubMed PMC

Kirchman D. L., Hanson T. E., Bioenergetics of photoheterotrophic bacteria in the oceans. Environ. Microbiol. Rep. 5, 188–199 (2013). PubMed

Oesterhelt D., Stoeckenius W., Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol. 233, 149–152 (1971). PubMed

Béjà O., et al. , Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000), 10.1126/science.289.5486.1902. PubMed DOI

Rusch D. B., et al. , The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007). PubMed PMC

Campbell B. J., Waidner L. A., Cottrell M. T., Kirchman D. L., Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ. Microbiol. 10, 99–109 (2008). PubMed

Frias-Lopez J., et al. , Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. U.S.A. 105, 3805–3810 (2008). PubMed PMC

Atamna-Ismaeel N., et al. , Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J. 2, 656–662 (2008). PubMed

Zeng Y., et al. , Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a high Arctic glacier. mBio 11, e02641-20 (2020). PubMed PMC

Kopejtka K., et al. , Simultaneous presence of bacteriochlorophyll and xanthorhodopsin genes in a freshwater bacterium. mSystems 5, 17 (2020). PubMed PMC

Kopejtka K., et al. , Characterization of the aerobic anoxygenic phototrophic bacterium Sphingomonas sp. AAP5. Microorganisms 9, 768 (2021). PubMed PMC

Bellas C. M., Sommaruga R., Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 1–14 (2021). PubMed PMC

Kovács Á. T., Rákhely G., Kovács K. L., The PpsR regulator family. Res. Microbiol. 156, 619–625 (2005). PubMed

Dubey A. P., Pandey P., Mishra S., Gupta P., Tripathi A. K., Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Res. Microbiol. 172, 103875 (2021). PubMed

Glantz S., et al. , Functional and topological diversity of LOV domain photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 113, 201509428 (2016). PubMed PMC

Nash A. I., et al. , Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 108, 9449–9454 (2011). PubMed PMC

Bína D., Litvin R., Vácha F., Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth. Res. 99, 115–125 (2009). PubMed

Lewis A., Spoonhower J. P., Perreault G. J., Observation of light emission from a rhodopsin. Nature 260, 675–678 (1976). PubMed

Balashov S. P., Imasheva E. S., Wang J. M., Lanyi J. K., Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 5, 2402–2414 (2008). PubMed PMC

Pérez M. T., Rofner C., Sommaruga R., Dissolved organic monomer partitioning among bacterial groups in two oligotrophic lakes. Environ. Microbiol. Rep. 7, 265–272 (2015). PubMed PMC

Harashima K., Shiba T., Totsuka T., Simidu U., Taga N., Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42, 1627–1628 (1978).

Hauruseu D., Koblížek M., Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl. Environ. Microbiol. 78, 7414–7419 (2012). PubMed PMC

Piwosz K., Villena-Alemany C., Mujakić I., Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. ISME J. 16, 1046–1054 (2021), 10.1038/s41396-021-01142-2. PubMed DOI PMC

Gómez-Consarnau L., et al. , Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007). PubMed

Lami R., Cottrell M. T., Campbell B. J., Kirchman D. L., Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. Environ. Microbiol. 11, 3201–3209 (2009). PubMed

Feng S., Powell S. M., Wilson R., Bowman J. P., Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent. ISME J. 7, 2206–2213 (2013). PubMed PMC

Sommaruga R., The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B 1–2, 35–42 (2001). PubMed

Felip M., Wille A., Sattler B., Psenner R., Microbial communities in the winter cover and the water column of an alpine lake: System connectivity and uncoupling. Aquat. Microb. Ecol. 29, 123–134 (2002).

Bertilsson S., et al. , The under-ice microbiome of seasonally frozen lakes. Limnol. Oceanogr. 58, 1998–2012 (2013).

Blumthaler M., Ambach W., Cede A., Staehelin J., Attenuation of erythemal effective irradiance by cloudiness at low and high altitude in the Alpine region. Photochem. Photobiol. 63, 193–196 (1996).

Yurkov V. V., van Gemerden H., Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 159, 84–89 (1993).

Tomasch J., Gohl R., Bunk B., Diez M. S., Wagner-Döbler I., Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J. 5, 1957–1968 (2011). PubMed PMC

Ottesen E. A., et al. , Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014), 10.1126/science.1252476. PubMed DOI

Kyndt J. A., Robertson S., Shoffstall I. B., Ramaley R. F., Meyer T. E., Genome sequence and characterization of a xanthorhodopsin-containing, aerobic anoxygenic phototrophic Rhodobacter species, isolated from mesophilic conditions at Yellowstone National Park. Microorganisms 10, 1169 (2022). PubMed PMC

Imhoff J. F., Rahn T., Künzel S., Neulinger S. C., Phylogeny of anoxygenic photosynthesis based on sequences of photosynthetic reaction center proteins and a key enzyme in bacteriochlorophyll biosynthesis, the chlorophyllide reductase. Microorganisms 7, 576 (2019). PubMed PMC

Zeng Y., Feng F., Medová H., Dean J., Koblížek M., Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. U.S.A. 111, 7795–7800 (2014). PubMed PMC

Sharma A. K., Spudich J. L., Doolittle W. F., Microbial rhodopsins: Functional versatility and genetic mobility. Trends Microbiol. 14, 463–469 (2006). PubMed

Tamames J., Puente-Sánchez F., SqueezeMeta, A highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349 (2019). PubMed PMC

Wu Y.-W., Simmons B. A., Singer S. W., MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). PubMed

Kang D. D., et al. , MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7, e7359 (2019). PubMed PMC

Sieber C. M. K., et al. , Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). PubMed PMC

Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W., CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015). PubMed PMC

Thompson J. D., Higgins D. G., Gibson T. J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994). PubMed PMC

Saitou N., Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987). PubMed

Felsenstein J., Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981). PubMed

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). PubMed PMC

Tamura K., Nei M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993). PubMed

Tavare S. “Some probabilistic and statistical problems in the analysis of DNA sequences” in Some Mathematical Questions in Biology/DNA Sequence Analysis, Miura R. M., Ed. (AMS, 1986).

Pinto F., Thapper A., Sontheim W., Lindblad P., Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol. Biol. 10, 79 (2009). PubMed PMC

Livak K. J., Schmittgen T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001). PubMed

Shishkin A. A., et al. , Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015). PubMed PMC

Koblížek M., et al. , Utilization of light energy in phototrophic Gemmatimonadetes. J. Photochem. Photobiol. B 213, 112085 (2020). PubMed

Kaftan D., Bína D., Koblížek M., Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosynth. Res. 142, 181–193 (2019). PubMed PMC

Bína D., Litvín R., Vácha F., Šiffel P., New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth. Res. 88, 351–356 (2006). PubMed

Saccon F., et al. , A flexible LHCII structure allows for fine-tuning of excitation energy dissipation. SSRN Electron. J. (2020), 10.2139/ssrn.3600541. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...