Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-00703S
Grantová Agentura České Republiky
15-00703S
Grantová Agentura České Republiky
19-28323X
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000441
European Regional Development Fund
Algatech Plus (LO1416)
Czech Ministry of Education
Algatech Plus (LO1416)
Czech Ministry of Education
RVO:60077344
Akademie Věd České Republiky
PubMed
31267356
PubMed Central
PMC6848049
DOI
10.1007/s11120-019-00652-7
PII: 10.1007/s11120-019-00652-7
Knihovny.cz E-zdroje
- Klíčová slova
- Anoxygenic photosynthesis, Electron transfer, Reaction centre, Thermostability, Variable fluorescence,
- MeSH
- buněčné dýchání MeSH
- fluorescence MeSH
- fotosyntéza * MeSH
- kinetika MeSH
- Rhodospirillum rubrum fyziologie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- světlosběrné proteinové komplexy MeSH
The influence of temperature on photosynthetic reactions was investigated by a combination of time-resolved bacteriochlorophyll fluorescence, steady-state and differential absorption spectroscopy, and polarographic respiration measurements in intact cells of purple non-sulphur bacterium Rhodospirillum rubrum. Using variable bacteriochlorophyll fluorescence, it was found that the electron-transport activity increased with the increasing temperature up to 41 °C. The fast and medium components of the fluorescence decay kinetics followed the ideal Arrhenius equation. The calculated activation energy for the fast component was Ea1 = 16 kJ mol-1, while that of the medium component was more than double, with Ea2 = 38 kJ mol-1. At temperatures between 41 and 59 °C, the electron transport was gradually, irreversibly inhibited. Interestingly, the primary charge separation remained fully competent from 20 to 59 °C as documented by both BChl fluorescence and differential absorption spectroscopy of the P870+ signal. At temperatures above 60 °C, the primary photochemistry became reversibly inhibited, which was manifested by an increase in minimal fluorescence, F0, whereas maximal fluorescence, FM, slowly declined. Finally, above 71 °C, the photosynthetic complexes began to disassemble as seen in the decline of all fluorometric parameters and the disappearance of the LH1 absorption band at 880 nm. The extended optimal temperature of photosynthetic reaction centre in a model species of Rhodospirillales adds on the evidence that the good thermostability of the photosynthetic reaction centres is present across all Alphaproteobacteria.
Biology Centre Czech Academy of Sciences Branišovská 31 Ceske Budejovice Czech Republic
Center Algatech Institute of Microbiology CAS 37981 Třeboň Czech Republic
Faculty of Science University of South Bohemia 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Arnold W, Clayton RK. The 1st step in photosynthesis—evidence for its electronic nature. Proc Natl Acad Sci USA. 1960;46(6):769–776. doi: 10.1073/pnas.46.6.769. PubMed DOI PMC
Asztalos E, Sipka G, Maróti P. Fluorescence relaxation in intact cells of photosynthetic bacteria: donor and acceptor side limitations of reopening of the reaction center. Photosynth Res. 2015;124:31–44. doi: 10.1007/s11120-014-0070-0. PubMed DOI
Bína D, Litvín R, Vácha F, Šiffel P. New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res. 2006;88:351–356. doi: 10.1007/s11120-006-9071-y. PubMed DOI
Björn LO, Govindjee The evolution of photosynthesis and chloroplasts. Curr Sci. 2009;96(11):1466–1474.
Chrétien D, Bénit P, Ha H-H, Keipert S, El-Khoury R, Chang Y-T, Jastroch M, Jacobs HT, Rustin P, Rak M. Mitochondria are physiologically maintained at close to 50°C. PLoS Biol. 2018;16(1):e2003992. doi: 10.1371/journal.pbio.2003992. PubMed DOI PMC
Cohen-Bazire G, Sistrom RW, Stanier RY. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol. 1957;49:25–68. doi: 10.1002/jcp.1030490104. PubMed DOI
Dinamarca J, Shlyk-Kerner O, Kaftan D, Goldberg E, Dulebo A, Gidekel M, Gutierrez A, Scherz A. Double mutation in photosystem II reaction centers and elevated CO2 grant thermotolerance to mesophilic cyanobacterium. PLoS ONE. 2011;6(12):e28389. doi: 10.1371/journal.pone.0028389. PubMed DOI PMC
Esmarch E. Über die Reinkultur eines Spirillum. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung I. 1877;1:225–230.
Graige MS, Feher G, Okamura MY. Conformational gating of the electron transfer reaction QA− QB− > QAQB− in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci USA. 1998;95:11679–11684. doi: 10.1073/pnas.95.20.11679. PubMed DOI PMC
Helenius V, Monshouwer R, Grondelle R. Temperature-dependent lifetimes and quantum yield of the singlet and triplet sates of the B820 subunit of LH1 antenna complex of purple bacterium Rhodospirillum rubrum. J Phys Chem B. 1997;101:10554–10559. doi: 10.1021/jp972013d. DOI
Hughes AV, Rees P, Heathcote P, Jones MR. Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J. 2006;90:4155–4166. doi: 10.1529/biophysj.105.070029. PubMed DOI PMC
Kaftan D, Medová H, Selyanin V, Kopejtka K, Koblížek M. Extended temperature optimum of photosynthetic reaction centers in Rhodobacterales. Photosynthetica. 2019;57(2):361–366. doi: 10.32615/ps.2019.039. DOI
Kaiser I, Oelze J. Growth and adaptation to phototrophic conditions of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides at different temperatures. Arch Microbiol. 1980;126:187–194. doi: 10.1007/BF00511226. DOI
Kaiser I, Oelze J. Temperature dependence of membrane-bound enzymes of the energy metabolism in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Arch Microbiol. 1980;126:195–200. doi: 10.1007/BF00511227. DOI
Kleinfeld D, Okamura MY, Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry. 1984;23:5780–5786. doi: 10.1021/bi00319a017. PubMed DOI
Lavergne J, Trissl HW. Theory of fluorescence induction in Photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J. 1995;68:2474–2492. doi: 10.1016/S0006-3495(95)80429-7. PubMed DOI PMC
Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58:110–120. doi: 10.1021/j150512a005. DOI
Molisch H. Die Purpurbakterien nach neuen Untersuchungen. Jena: G. Fischer; 1907. pp. 1–95.
Nedbal L, Trtílek M, Kaftan D. Flash fluorescence induction: a novel method to study regulation of photosystem II. J Photochem Photobiol, B. 1999;48(2–3):154–157. doi: 10.1016/S1011-1344(99)00032-9. DOI
Nisbet EG, Sleep NH. The habitat and nature of early life. Nature. 2001;409:1083–1091. doi: 10.1038/35059210. PubMed DOI
Odahara T, Ishii N, Ooishi A, Honda S, Uedaira H, Hara M, Miyake J. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions. Biochim Biophys Acta. 2011;1808:1645–1653. doi: 10.1016/j.bbamem.2011.02.013. PubMed DOI
Okamura MY, Paddock ML, Graige MS, Feher G. Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta. 2000;1458:148–163. doi: 10.1016/S0005-2728(00)00065-7. PubMed DOI
Otal EH, Iñón FA, Andrade FJ. Monitoring the temperature of dilute aqueous solutions using near-infrared water absorption. Appl Spectrosc. 2003;57:661–666. doi: 10.1366/000370203322005355. PubMed DOI
Palazzo G, Lopez F, Malardi A. Effect of detergent concentration on the thermal stability of a membrane protein: the case study of bacterial reaction center solubilized by N,N-dimethyldodecylamine-N-oxide. Biochim Biophys Acta. 2010;1804(1):137–146. doi: 10.1016/j.bbapap.2009.09.021. PubMed DOI
Rätsep M, Muru R, Freiberg A. High temperature limit of photosynthetic excitons. Nat Commun. 2018;9:99. doi: 10.1038/s41467-017-02544-7. PubMed DOI PMC
Rothschild LJ, Mancinelli R. Life in extreme environments. Nature. 2001;409:1092–1101. doi: 10.1038/35059215. PubMed DOI
Shlyk O, Samish I, Matěnová M, Dulebo A, Poláková H, Kaftan D, Scherz A. A single residue controls electron transfer gating in photosynthetic reaction centers. Sci Rep. 2017;7:44580. doi: 10.1038/srep44580. PubMed DOI PMC
Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Sai M, Kless H, Scherz A. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature. 2006;442(7104):827–830. doi: 10.1038/nature04947. PubMed DOI
Venturoli G, Trotta M, Feick R, Melandri BA, Zannoni D. Temperature dependence of charge recombination from the P+QA− and P+QB− states in photosynthetic reaction centers isolated from the thermophilic bacterium Chloroflexus aurantiacus. Eur J Biochem. 1991;202:625–634. doi: 10.1111/j.1432-1033.1991.tb16416.x. PubMed DOI
Watson AJ, Hughes AV, Fyfe PK, Wakeham MC, Holden-Dye K, Heathcote P, Jones MR. On the role of basis residues in adapting the reaction centre-LH1 complex for growth at elevated temperatures in purple bacteria. Photosynth Res. 2005;86:81–100. doi: 10.1007/s11120-005-4047-x. PubMed DOI
Weaver P. Temperature-sensitive mutations of the photosynthetic apparatus of Rhodospirillum rubrum. Proc Natl Acad Sci USA. 1971;68:136–138. doi: 10.1073/pnas.68.1.136. PubMed DOI PMC