Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum
Status PubMed-not-MEDLINE Language English Country Netherlands Media electronic-ecollection
Document type Journal Article
PubMed
39035834
PubMed Central
PMC11259993
DOI
10.1016/j.csbj.2024.06.023
PII: S2001-0370(24)00220-4
Knihovny.cz E-resources
- Keywords
- Acetate, Depolymerase knock-out, Fructose, Gene ontology, Genome, Metabolism, Polyhydroxyalkanoates, RNA-Seq, Rhodospirillum rubrum, Transcriptome,
- Publication type
- Journal Article MeSH
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
See more in PubMed
Simon C., Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol. 2011;77:1153–1161. doi: 10.1128/AEM.02345-10. PubMed DOI PMC
Gest H. A serendipic legacy: Erwin Esmarch’s isolation of the first photosynthetic bacterium in pure culture. Photosynth Res. 1995;46:473–478. doi: 10.1007/BF00032302. PubMed DOI
Revelles O., Tarazona N., García J.L., Prieto M.A. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol. 2016;18:708–720. doi: 10.1111/1462-2920.13087. PubMed DOI
Karmann S., Panke S., Zinn M. Fed-batch cultivations of Rhodospirillum rubrum under multiple nutrient-limited growth conditions on syngas as a novel option to produce poly(3-Hydroxybutyrate) (PHB) Front Bioeng Biotechnol. 2019;7 doi: 10.3389/fbioe.2019.00059. PubMed DOI PMC
Najafpour G., Younesi H. Hydrogen production from synthesis gas using the photosynthetic bacterium Rhodospirillum rubrum. ASEAN J Chem Eng. 2005;5:35. doi: 10.22146/ajche.50162. DOI
Brandl H., Knee E.J., Fuller R.C., Gross R.A., Lenz R.W. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyalkanoates): Potential sources for biodegradable polyesters. Int J Biol Macromol. 1989;11:49–55. doi: 10.1016/0141-8130(89)90040-8. PubMed DOI
Kaftan D., Bína D., Koblížek M. Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosynth Res. 2019;142:181–193. doi: 10.1007/s11120-019-00652-7. PubMed DOI PMC
Najafpour G.D., Younesi H. Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium, Rhodospirillum rubrum. World J Microbiol Biotechnol. 2007;23:275–284. doi: 10.1007/s11274-006-9225-2. DOI
Ghosh R., Hardmeyer A., Thoenen I., Bachofen R. Optimization of the Sistrom culture medium for large-scale batch cultivation of Rhodospirillum rubrum under semiaerobic conditions with maximal yield of photosynthetic membranes. Appl Environ Microbiol. 1994;60:1698–1700. doi: 10.1128/aem.60.5.1698-1700.1994. PubMed DOI PMC
Munk A.C., Copeland A., Lucas S., Lapidus A., Del Rio T.G., Barry K., et al. Complete genome sequence of Rhodospirillum rubrum type strain (S1T) Stand Genom Sci. 2011;4:293–302. doi: 10.4056/sigs.1804360. PubMed DOI PMC
Lehman L.J., Roberts G.P. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol. 1991;173:5705–5711. doi: 10.1128/jb.173.18.5705-5711.1991. PubMed DOI PMC
Jin H., Nikolau B.J. Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. J Bacteriol. 2012;194:5522–5529. doi: 10.1128/JB.01111-12. PubMed DOI PMC
Jin H., Nikolau B.J. Evaluating PHA productivity of bioengineered Rhodosprillum rubrum. PLoS One. 2014;9 doi: 10.1371/journal.pone.0096621. PubMed DOI PMC
Mastroleo F., Van Houdt R., Leroy B., Benotmane M.A., Janssen A., Mergeay M., et al. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 2009;3:1402–1419. doi: 10.1038/ismej.2009.74. PubMed DOI
Mastroleo F., Van Houdt R., Atkinson S., Mergeay M., Hendrickx L., Wattiez R., et al. Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density. Microbiol. 2013;159:2456–2466. doi: 10.1099/mic.0.066415-0. PubMed DOI
Klask C. Heterologous expression of various PHA synthase genes in Rhodospirillum rubrum. Chem Biochem Eng Q. 2015;29:75–85. doi: 10.15255/CABEQ.2014.2249. DOI
Kouřilová X., Schwarzerová J., Pernicová I., Sedlář K., Mrázová K., Krzyžánek V., et al. The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms. 2021;9:909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC
Mrazova K., Bacovsky J., Sedrlova Z., Slaninova E., Obruca S., Fritz I., et al. Urany-less low voltage transmission electron microscopy: a powerful tool for ultrastructural studying of cyanobacterial cells. Microorganisms. 2023;11:888. doi: 10.3390/microorganisms11040888. PubMed DOI PMC
Leger A., Leonardi T. pycoQC, interactive quality control for Oxford Nanopore Sequencing. J Open Source Softw. 2019;4:1236. doi: 10.21105/joss.01236. DOI
Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Vaser R., Sović I., Nagarajan N., Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9 doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC
Huerta-Cepas J., Szklarczyk D., Heller D., Hernández-Plaza A., Forslund S.K., Cook H., et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25:119–120. doi: 10.1093/bioinformatics/btn578. PubMed DOI PMC
Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M.-A., et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–945. doi: 10.1093/bioinformatics/16.10.944. PubMed DOI
Biswas A., Staals R.H.J., Morales S.E., Fineran P.C., Brown C.M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:356. doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC
Akhter S., Aziz R.K., Edwards R.A. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012;40 doi: 10.1093/nar/gks406. e126–e126. PubMed DOI PMC
Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE: a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2023;51:D629–D630. doi: 10.1093/nar/gkac975. PubMed DOI PMC
Sayers E.W., Cavanaugh M., Clark K., Ostell J., Pruitt K.D., Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019 doi: 10.1093/nar/gkz956. PubMed DOI PMC
Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T.G., et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Kopylova E., Noé L., Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Smith T., Heger A., Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017;27:491–499. doi: 10.1101/gr.209601.116. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
van der Maaten L. Accelerating t-SNE using Tree-Based Algorithms. J Mach Learn Res. 2014;15:3221–3245.
Wickham H. Springer New York; New York, NY: 2009. ggplot2. DOI
Alexa A., Rahnenfurher J. topGO: Enrichment Analysis for Gene Ontology 2023. doi:10.18129/B9.bioc.topGO.
Ozuna A., Liberto D., Joyce R.M., Arnvig K.B., Nobeli I. baerhunter: an R package for the discovery and analysis of expressed non-coding regions in bacterial RNA-seq data. Bioinformatics. 2020;36:966–969. doi: 10.1093/bioinformatics/btz643. PubMed DOI
Lawrence M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9 doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC
Li X.-Q., Du D. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS One. 2014;9 doi: 10.1371/journal.pone.0088339. PubMed DOI PMC
Grammel H., Gilles E.-D., Ghosh R. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum. Appl Environ Microbiol. 2003;69:6577–6586. doi: 10.1128/AEM.69.11.6577-6586.2003. PubMed DOI PMC
De Meur Q., Deutschbauer A., Koch M., Bayon-Vicente G., Cabecas Segura P., Wattiez R., et al. New perspectives on butyrate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions. BMC Microbiol. 2020;20:126. doi: 10.1186/s12866-020-01814-7. PubMed DOI PMC
Leroy B., De Meur Q., Moulin C., Wegria G., Wattiez R. New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. Microbiol. 2015;161:1061–1072. doi: 10.1099/mic.0.000067. PubMed DOI
Narancic T., Scollica E., Kenny S.T., Gibbons H., Carr E., Brennan L., et al. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions. Appl Microbiol Biotechnol. 2016;100:8901–8912. doi: 10.1007/s00253-016-7711-5. PubMed DOI
Rudolf C., Grammel H. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzym Micro Technol. 2012;50:238–246. doi: 10.1016/j.enzmictec.2012.01.007. PubMed DOI
Erb T.J., Fuchs G., Alber B.E. (2S)‐Methylsuccinyl‐CoA dehydrogenase closes the ethylmalonyl‐CoA pathway for acetyl‐CoA assimilation. Mol Microbiol. 2009;73:992–1008. doi: 10.1111/j.1365-2958.2009.06837.x. PubMed DOI
Erb T.J., Berg I.A., Brecht V., Müller M., Fuchs G., Alber B.E. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway. Proc Natl Acad Sci. 2007;104:10631–10636. doi: 10.1073/pnas.0702791104. PubMed DOI PMC
Ekici S., Pawlik G., Lohmeyer E., Koch H.-G., Daldal F. Biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochim Et Biophys Acta (BBA) - Bioenerg. 2012;1817:898–910. doi: 10.1016/j.bbabio.2011.10.011. PubMed DOI PMC
Jain R., Shapleigh J.P. Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. Microbiol. 2001;147:2505–2515. doi: 10.1099/00221287-147-9-2505. PubMed DOI
Larosa V., Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep. 2018;38 doi: 10.1042/BSR20171492. PubMed DOI PMC
Korshunov S., Imlay J.A. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol. 2010;75:1389–1401. doi: 10.1111/j.1365-2958.2010.07059.x. PubMed DOI PMC
Lee Y.R., Lee W.-H., Lee S.Y., Lee J., Kim M.-S., Moon M., et al. Regulation of reactive oxygen species promotes growth and carotenoid production under autotrophic conditions in Rhodobacter sphaeroides. Front Microbiol. 2022;13 doi: 10.3389/fmicb.2022.847757. PubMed DOI PMC
Wahl A., Schuth N., Pfeiffer D., Nussberger S., Jendrossek D. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol. 2012;12:262. doi: 10.1186/1471-2180-12-262. PubMed DOI PMC
Pfeiffer D., Wahl A., Jendrossek D. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol. 2011;82:936–951. doi: 10.1111/j.1365-2958.2011.07869.x. PubMed DOI
Bresan S., Jendrossek D. New insights into PhaM-PhaC-mediated localization of polyhydroxybutyrate granules in Ralstonia eutropha H16. Appl Environ Microbiol. 2017;83 doi: 10.1128/AEM.00505-17. PubMed DOI PMC
Liu J., Zhao Y., Diao M., Wang W., Hua W., Wu S., et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Rhodospirillum rubrum using a two-step culture strategy. J Chem. 2019;2019:1–8. doi: 10.1155/2019/8369179. DOI
Godoy M.S., de Miguel S.R., Prieto M.A. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide. Micro Cell Fact. 2023;22:47. doi: 10.1186/s12934-023-02045-x. PubMed DOI PMC
Cheng Z., Li K., Hammad L.A., Karty J.A., Bauer C.E. Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol Microbiol. 2014;91:649–664. doi: 10.1111/mmi.12491. PubMed DOI PMC
Cavazza C., Collin-Faure V., Pérard J., Diemer H., Cianférani S., Rabilloud T., et al. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. J Proteom. 2022;250 doi: 10.1016/j.jprot.2021.104389. PubMed DOI
Busch A.W.U., Montgomery B.L. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol. 2015;4:260–271. doi: 10.1016/j.redox.2015.01.010. PubMed DOI PMC
Zeiger L., Grammel H. Model‐based high cell density cultivation of Rhodospirillum rubrum under respiratory dark conditions. Biotechnol Bioeng. 2010;105:729–739. doi: 10.1002/bit.22589. PubMed DOI
Carius L., Carius A.B., McIntosh M., Grammel H. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol. 2013;13:189. doi: 10.1186/1471-2180-13-189. PubMed DOI PMC
Ghosh R., Roth E., Abou-Aisha K., Saegesser R., Autenrieth C. The monofunctional cobalamin biosynthesis enzyme precorrin-3B synthase (CobZRR) is essential for anaerobic photosynthesis in Rhodospirillum rubrum but not for aerobic dark metabolism. Microbiol. 2018;164:1416–1431. doi: 10.1099/mic.0.000718. PubMed DOI
Godoy M.S., de Miguel S.R., Prieto M.A. A singular PpaA/AerR-like protein in Rhodospirillum rubrum rules beyond the boundaries of photosynthesis in response to the intracellular redox state. MSystems. 2023;8 doi: 10.1128/msystems.00702-23. PubMed DOI PMC
Obruca S., Snajdar O., Svoboda Z., Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol. 2013;29:2417–2428. doi: 10.1007/s11274-013-1410-5. PubMed DOI
Raberg M., Reinecke F., Reichelt R., Malkus U., König S., Pötter M., et al. Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-Hydroxybutyrate) accumulation. Appl Environ Microbiol. 2008;74:4477–4490. doi: 10.1128/AEM.00440-08. PubMed DOI PMC
Schlegel H.G., Lafferty R., Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Für Mikrobiol. 1970;71:283–294. doi: 10.1007/BF00410161. PubMed DOI
Wang J., Ma W., Wang Y., Lin L., Wang T., Wang Y., et al. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl Microbiol Biotechnol. 2018;102:10523–10539. doi: 10.1007/s00253-018-9439-x. PubMed DOI
Wang J., Ma W., Fang Y., Zhang H., Liang H., Liu H., et al. Engineering the outer membrane could facilitate better bacterial performance and effectively enhance poly-3-hydroxybutyrate accumulation. Appl Environ Microbiol. 2021;87 doi: 10.1128/AEM.01389-21. PubMed DOI PMC
Cevallos M.A., Encarnación S., Leija A., Mora Y., Mora J. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-β-hydroxybutyrate. J Bacteriol. 1996;178:1646–1654. doi: 10.1128/jb.178.6.1646-1654.1996. PubMed DOI PMC
Senior P.J., Dawes E.A. The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J. 1973;134:225–238. doi: 10.1042/bj1340225. PubMed DOI PMC
Raberg M., Voigt B., Hecker M., Steinbüchel A. A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4. PLoS One. 2014;9 doi: 10.1371/journal.pone.0095907. PubMed DOI PMC
Cook A.M., Schlegel H.G. Metabolite concentrations in Alcaligenes eutrophus H 16 and a mutant defective in poly-β-hydroxybutyrate synthesis. Arch Microbiol. 1978;119:231–235. doi: 10.1007/BF00405400. DOI
Jung Y.-M., Yong-Hyun L. Investigation of regulatory mechanism of flux of Acetyl-CoA in Alcaligenes eutrophus using PHB- negative Mutant and transformants harboring cloned phbCAB Genes. J Microbiol Biotechnol. 1997;7:215–222.
Steinbüchel A., Schlegel H.G. Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol. 1989;31:168–175. doi: 10.1007/BF00262457. DOI
Shimoni Y., Friedlander G., Hetzroni G., Niv G., Altuvia S., Biham O., et al. Regulation of gene expression by small non‐coding RNAs: a quantitative view. Mol Syst Biol. 2007;3 doi: 10.1038/msb4100181. PubMed DOI PMC
Reyer M.A., Chennakesavalu S., Heideman E.M., Ma X., Bujnowska M., Hong L., et al. Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators. Cell Rep. 2021;36 doi: 10.1016/j.celrep.2021.109764. PubMed DOI PMC
Gottesman S., McCullen C.A., Guillier M., Vanderpool C.K., Majdalani N., Benhammou J., et al. Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol. 2006;71:1–11. doi: 10.1101/sqb.2006.71.016. PubMed DOI PMC
Huang H.-Y., Chang H.-Y., Chou C.-H., Tseng C.-P., Ho S.-Y., Yang C.-D., et al. sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res. 2009;37:D150–D154. doi: 10.1093/nar/gkn852. PubMed DOI PMC
Bervoets I., Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev. 2019;43:304–339. doi: 10.1093/femsre/fuz001. PubMed DOI PMC