Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells

. 2023 Mar 29 ; 11 (4) : . [epub] 20230329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37110311

Grantová podpora
I 4082 Austrian Science Fund FWF - Austria

Odkazy

PubMed 37110311
PubMed Central PMC10146862
DOI 10.3390/microorganisms11040888
PII: microorganisms11040888
Knihovny.cz E-zdroje

Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy. To investigate the influence of different imaging and staining strategies on the final image of cyanobacterial cells, samples stained by uranyl acetate with lead citrate, as well as unstained samples, were observed using TEM and accelerating voltages of 200 kV or 25 kV. Moreover, to examine the possibilities of reducing chromatic aberration, which often causes issues when imaging using electrons of lower energies, samples were also imaged using a scanning transmission electron microscopy at 15 kV accelerating voltages. The results of this study demonstrate that low-voltage electron microscopy offers great potential for uranyless electron microscopy.

Zobrazit více v PubMed

Winey M., Meehl J.B., O’Toole E.T., Giddings T.H. Conventional Transmission Electron Microscopy. Mol. Biol. Cell. 2014;25:319–323. doi: 10.1091/mbc.e12-12-0863. PubMed DOI PMC

Harris J.R. Transmission Electron Microscopy in Molecular Structural Biology: A Historical Survey. Arch. Biochem. Biophys. 2015;581:3–18. doi: 10.1016/j.abb.2014.11.011. PubMed DOI

Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P.M.G.E., Grigoras I.T., Malinauskaite L., Malinauskas T., Miehling J., et al. Single-Particle Cryo-EM at Atomic Resolution. Nature. 2020;587:152–156. doi: 10.1038/s41586-020-2829-0. PubMed DOI PMC

Yip K.M., Fischer N., Paknia E., Chari A., Stark H. Atomic-Resolution Protein Structure Determination by Cryo-EM. Nature. 2020;587:157–161. doi: 10.1038/s41586-020-2833-4. PubMed DOI

Burge R.E. Mechanisms of Contrast and Image Formation of Biological Specimens in the Transmission Electron Microscope. J. Microsc. 1973;98:251–285. doi: 10.1111/j.1365-2818.1973.tb03832.x. DOI

Franken L.E., Grünewald K., Boekema E.J., Stuart M.C.A. A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices, and Technical Developments. Small. 2020;16:1906198. doi: 10.1002/smll.201906198. PubMed DOI

Graham L., Orenstein J.M. Processing Tissue and Cells for Transmission Electron Microscopy in Diagnostic Pathology and Research. Nat. Protoc. 2007;2:2439–2450. doi: 10.1038/nprot.2007.304. PubMed DOI PMC

Frasca J.M., Parks V.R. A Routine Technique for Double-Staining Ultrathin Sections Using Uranyl and Lead Salts. J. Cell Biol. 1965;25:157–161. doi: 10.1083/jcb.25.1.157. PubMed DOI PMC

Wright R. Transmission Electron Microscopy of Yeast. Microsc. Res. Tech. 2000;51:496–510. doi: 10.1002/1097-0029(20001215)51:6<496::AID-JEMT2>3.0.CO;2-9. PubMed DOI

Nakakoshi M., Nishioka H., Katayama E. New Versatile Staining Reagents for Biological Transmission Electron Microscopy That Substitute for Uranyl Acetate. J. Electron Microsc. (Tokyo) 2011;60:401–407. doi: 10.1093/jmicro/dfr084. PubMed DOI

Moscardini A., Di Pietro S., Signore G., Parlanti P., Santi M., Gemmi M., Cappello V. Uranium-Free X Solution: A New Generation Contrast Agent for Biological Samples Ultrastructure. Sci. Rep. 2020;10:11540. doi: 10.1038/s41598-020-68405-4. PubMed DOI PMC

Hosogi N., Nishioka H., Nakakoshi M. Evaluation of Lanthanide Salts as Alternative Stains to Uranyl Acetate. Microscopy. 2015;64:429–435. doi: 10.1093/jmicro/dfv054. PubMed DOI

Kuipers J., Giepmans B.N.G. Neodymium as an Alternative Contrast for Uranium in Electron Microscopy. Histochem. Cell Biol. 2020;153:271–277. doi: 10.1007/s00418-020-01846-0. PubMed DOI PMC

Yamaguchi K., Suzuki K.I., Tanaka K. Examination of Electron Stains as a Substitute for Uranyl Acetate for the Ultrathin Sections of Bacterial Cells. J. Electron Microsc. (Tokyo) 2010;59:113–118. doi: 10.1093/jmicro/dfp045. PubMed DOI

He X., Liu B. Oolong Tea Extract as a Substitute for Uranyl Acetate in Staining of Ultrathin Sections Based on Examples of Animal Tissues for Transmission Electron Microscopy. J. Microsc. 2017;267:27–33. doi: 10.1111/jmi.12544. PubMed DOI

Sato S., Adachi A., Sasaki Y., Ghazizadeh M. Oolong Tea Extract as a Substitute for Uranyl Acetate in Staining of Ultrathin Sections. J. Microsc. 2008;229:17–20. doi: 10.1111/j.1365-2818.2007.01881.x. PubMed DOI

Malac M., Beleggia M., Kawasaki M., Li P., Egerton R.F. Convenient Contrast Enhancement by a Hole-Free Phase Plate. Ultramicroscopy. 2012;118:77–89. doi: 10.1016/j.ultramic.2012.02.004. PubMed DOI

Majorovits E., Barton B., Schultheiß K., Pérez-Willard F., Gerthsen D., Schröder R.R. Optimizing Phase Contrast in Transmission Electron Microscopy with an Electrostatic (Boersch) Phase Plate. Ultramicroscopy. 2007;107:213–226. doi: 10.1016/j.ultramic.2006.07.006. PubMed DOI

Bendayan M., Paransky E. Low Voltage Transmission Electron Microscopy in Cell Biology. Prog. Histochem. Cytochem. 2015;50:1–10. doi: 10.1016/j.proghi.2015.05.001. PubMed DOI

Lednický F., Coufalová E., Hromádková J., Delong A., Kolařík V. Low-Voltage TEM Imaging of Polymer Blends. Polymer (Guildf) 2000;41:4909–4914. doi: 10.1016/S0032-3861(99)00711-9. DOI

Egerton R.F. Choice of Operating Voltage for a Transmission Electron Microscope. Ultramicroscopy. 2014;145:85–93. doi: 10.1016/j.ultramic.2013.10.019. PubMed DOI

Drummy L.F., Yang J., Martin D.C. Low-Voltage Electron Microscopy of Polymer and Organic Molecular Thin Films. Ultramicroscopy. 2004;99:247–256. doi: 10.1016/j.ultramic.2004.01.011. PubMed DOI

Lednický F., Hromádková J., Pientka Z. Ultrathin Sectioning of Polymeric Materials for Low-Voltage Transmission Electron Microscopy. Polymer (Guildf) 2001;42:4329–4338. doi: 10.1016/S0032-3861(00)00790-4. DOI

Bendayan M., Londono I., Paransky E. Compartmentalization of Pancreatic Secretory Zymogen Granules as Revealed by Low-Voltage Transmission Electron Microscopy. J. Histochem. Cytochem. 2011;59:899–907. doi: 10.1369/0022155411418507. PubMed DOI PMC

Nebesářová J., Hozák P., Frank L., Štěpan P., Vancová M. The Cutting of Ultrathin Sections with the Thickness Less than 20 Nm from Biological Specimens Embedded in Resin Blocks. Microsc. Res. Tech. 2016;79:512–517. doi: 10.1002/jemt.22659. PubMed DOI

Möller L., Holland G., Laue M. Diagnostic Electron Microscopy of Viruses With Low-Voltage Electron Microscopes. J. Histochem. Cytochem. 2020;68:389–402. doi: 10.1369/0022155420929438. PubMed DOI

Delong A., Hladil K., Kolařík V. Low Voltage Transmission Electron Microscope. Microsc. Anal. 1994;27:13–15.

Marin K., Stirnberg M., Eisenhut M., Krämer R., Hagemann M. Osmotic Stress in Synechocystis sp. PCC 6803: Low Tolerance towards Nonionic Osmotic Stress Results from Lacking Activation of Glucosylglycerol Accumulation. Microbiology. 2006;152:2023–2030. doi: 10.1099/mic.0.28771-0. PubMed DOI

Červený J., Sinetova M., Zavřel T., Los D. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34. Life. 2015;5:676–699. doi: 10.3390/life5010676. PubMed DOI PMC

Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. Cold-Regulated Genes under Control of the Cold Sensor Hik33 in Synechocystis. Mol. Microbiol. 2001;40:235–244. doi: 10.1046/j.1365-2958.2001.02379.x. PubMed DOI

He Y.-Y., Klisch M., Häder D.-P. Adaptation of Cyanobacteria to UV-B Stress Correlated with Oxidative Stress and Oxidative Damage. Photochem. Photobiol. 2002;76:188–196. doi: 10.1562/0031-8655(2002)076<0188:AOCTUB>2.0.CO;2. PubMed DOI

Mastropetros S.G., Pispas K., Zagklis D., Ali S.S., Kornaros M. Biopolymers Production from Microalgae and Cyanobacteria Cultivated in Wastewater: Recent Advances. Biotechnol. Adv. 2022;60:107999. doi: 10.1016/j.biotechadv.2022.107999. PubMed DOI

Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC

Möllers K.B., Cannella D., Jørgensen H., Frigaard N.-U. Cyanobacterial Biomass as Carbohydrate and Nutrient Feedstock for Bioethanol Production by Yeast Fermentation. Biotechnol. Biofuels. 2014;7:64. doi: 10.1186/1754-6834-7-64. PubMed DOI PMC

Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC

Sudesh K., Taguchi K., Doi Y. Effect of Increased PHA Synthase Activity on Polyhydroxyalkanoates Biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol. 2002;30:97–104. doi: 10.1016/S0141-8130(02)00010-7. PubMed DOI

Khetkorn W., Incharoensakdi A., Lindblad P., Jantaro S. Enhancement of Poly-3-Hydroxybutyrate Production in Synechocystis sp. PCC 6803 by Overexpression of Its Native Biosynthetic Genes. Bioresour. Technol. 2016;214:761–768. doi: 10.1016/j.biortech.2016.05.014. PubMed DOI

Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light Scattering on PHA Granules Protects Bacterial Cells against the Harmful Effects of UV Radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The Presence of PHB Granules in Cytoplasm Protects Non-Halophilic Bacterial Cells against the Harmful Impact of Hypertonic Environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI

Novackova I., Hrabalova V., Slaninova E., Sedlacek P., Samek O., Koller M., Krzyzanek V., Hrubanova K., Mrazova K., Nebesarova J., et al. The Role of Polyhydroxyalkanoates in Adaptation of Cupriavidus Necator to Osmotic Pressure and High Concentration of Copper Ions. Int. J. Biol. Macromol. 2022;206:977–989. doi: 10.1016/j.ijbiomac.2022.03.102. PubMed DOI

Yan P., Guo J., Zhang P., Xiao Y., Li Z., Zhang S., Zhang Y., He S. The Role of Morphological Changes in Algae Adaptation to Nutrient Stress at the Single-Cell Level. Sci. Total Environ. 2021;754:142076. doi: 10.1016/j.scitotenv.2020.142076. PubMed DOI

Carloto I., Johnston P., Pestana C.J., Lawton L.A. Detection of Morphological Changes Caused by Chemical Stress in the Cyanobacterium Planktothrix Agardhii Using Convolutional Neural Networks. Sci. Total Environ. 2021;784:146956. doi: 10.1016/j.scitotenv.2021.146956. PubMed DOI

Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 1979;111:1–61. doi: 10.1099/00221287-111-1-1. DOI

Meixner K., Daffert C., Dalnodar D., Mrázová K., Hrubanová K., Krzyžánek V., Nebesářová J., Samek O., Šedrlová Z., Slaninova E., et al. Glycogen, Poly(3-Hydroxybutyrate) and Pigment Accumulation in Three Synechocystis Strains when Exposed to a Stepwise Increasing Salt Stress. J. Appl. Phycol. 2022;34:1227–1241. doi: 10.1007/s10811-022-02693-3. PubMed DOI PMC

Kouřilová X., Schwarzerová J., Pernicová I., Sedlář K., Mrázová K., Krzyžánek V., Nebesářová J., Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter Xylanophilus and Rubrobacter Spartanus. Microorganisms. 2021;9:909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC

Van de Meene A.M.L., Hohmann-Marriott M.F., Vermaas W.F.J., Roberson R.W. The Three-Dimensional Structure of the Cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 2006;184:259–270. doi: 10.1007/s00203-005-0027-y. PubMed DOI

Sousa A.A., Leapman R.D. Development and Application of STEM for the Biological Sciences. Ultramicroscopy. 2012;123:38–49. doi: 10.1016/j.ultramic.2012.04.005. PubMed DOI PMC

Colliex C., Mory C. Scanning Transmission Electron Microscopy of Biological Structures. Biol. Cell. 1994;80:175–180. doi: 10.1111/j.1768-322X.1994.tb00928.x. PubMed DOI

Bozzola J.J., Russel L.D. Electron Microscopy: Principles and Techniques for Biologists. 2nd ed. Jones and Bartlett; Burlington, MA, USA: 1999.

Wolf S.G., Shimoni E., Elbaum M., Houben L. Cellular Imaging. Springer; Cham, Switzerland: 2018. STEM Tomography in Biology; pp. 33–60.

Egerton R.F. Radiation Damage to Organic and Inorganic Specimens in the TEM. Micron. 2019;119:72–87. doi: 10.1016/j.micron.2019.01.005. PubMed DOI

Hettler S., Dries M., Hermann P., Obermair M., Gerthsen D., Malac M. Carbon Contamination in Scanning Transmission Electron Microscopy and Its Impact on Phase-Plate Applications. Micron. 2017;96:38–47. doi: 10.1016/j.micron.2017.02.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...