Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4082
Austrian Science Fund FWF - Austria
PubMed
37110311
PubMed Central
PMC10146862
DOI
10.3390/microorganisms11040888
PII: microorganisms11040888
Knihovny.cz E-zdroje
- Klíčová slova
- Synechocystis, contrasting agents, low voltage electron microscopy, polyhydroxyalkanoates, transmission electron microscopy, uranyl acetate,
- Publikační typ
- časopisecké články MeSH
Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy. To investigate the influence of different imaging and staining strategies on the final image of cyanobacterial cells, samples stained by uranyl acetate with lead citrate, as well as unstained samples, were observed using TEM and accelerating voltages of 200 kV or 25 kV. Moreover, to examine the possibilities of reducing chromatic aberration, which often causes issues when imaging using electrons of lower energies, samples were also imaged using a scanning transmission electron microscopy at 15 kV accelerating voltages. The results of this study demonstrate that low-voltage electron microscopy offers great potential for uranyless electron microscopy.
Zobrazit více v PubMed
Winey M., Meehl J.B., O’Toole E.T., Giddings T.H. Conventional Transmission Electron Microscopy. Mol. Biol. Cell. 2014;25:319–323. doi: 10.1091/mbc.e12-12-0863. PubMed DOI PMC
Harris J.R. Transmission Electron Microscopy in Molecular Structural Biology: A Historical Survey. Arch. Biochem. Biophys. 2015;581:3–18. doi: 10.1016/j.abb.2014.11.011. PubMed DOI
Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P.M.G.E., Grigoras I.T., Malinauskaite L., Malinauskas T., Miehling J., et al. Single-Particle Cryo-EM at Atomic Resolution. Nature. 2020;587:152–156. doi: 10.1038/s41586-020-2829-0. PubMed DOI PMC
Yip K.M., Fischer N., Paknia E., Chari A., Stark H. Atomic-Resolution Protein Structure Determination by Cryo-EM. Nature. 2020;587:157–161. doi: 10.1038/s41586-020-2833-4. PubMed DOI
Burge R.E. Mechanisms of Contrast and Image Formation of Biological Specimens in the Transmission Electron Microscope. J. Microsc. 1973;98:251–285. doi: 10.1111/j.1365-2818.1973.tb03832.x. DOI
Franken L.E., Grünewald K., Boekema E.J., Stuart M.C.A. A Technical Introduction to Transmission Electron Microscopy for Soft-Matter: Imaging, Possibilities, Choices, and Technical Developments. Small. 2020;16:1906198. doi: 10.1002/smll.201906198. PubMed DOI
Graham L., Orenstein J.M. Processing Tissue and Cells for Transmission Electron Microscopy in Diagnostic Pathology and Research. Nat. Protoc. 2007;2:2439–2450. doi: 10.1038/nprot.2007.304. PubMed DOI PMC
Frasca J.M., Parks V.R. A Routine Technique for Double-Staining Ultrathin Sections Using Uranyl and Lead Salts. J. Cell Biol. 1965;25:157–161. doi: 10.1083/jcb.25.1.157. PubMed DOI PMC
Wright R. Transmission Electron Microscopy of Yeast. Microsc. Res. Tech. 2000;51:496–510. doi: 10.1002/1097-0029(20001215)51:6<496::AID-JEMT2>3.0.CO;2-9. PubMed DOI
Nakakoshi M., Nishioka H., Katayama E. New Versatile Staining Reagents for Biological Transmission Electron Microscopy That Substitute for Uranyl Acetate. J. Electron Microsc. (Tokyo) 2011;60:401–407. doi: 10.1093/jmicro/dfr084. PubMed DOI
Moscardini A., Di Pietro S., Signore G., Parlanti P., Santi M., Gemmi M., Cappello V. Uranium-Free X Solution: A New Generation Contrast Agent for Biological Samples Ultrastructure. Sci. Rep. 2020;10:11540. doi: 10.1038/s41598-020-68405-4. PubMed DOI PMC
Hosogi N., Nishioka H., Nakakoshi M. Evaluation of Lanthanide Salts as Alternative Stains to Uranyl Acetate. Microscopy. 2015;64:429–435. doi: 10.1093/jmicro/dfv054. PubMed DOI
Kuipers J., Giepmans B.N.G. Neodymium as an Alternative Contrast for Uranium in Electron Microscopy. Histochem. Cell Biol. 2020;153:271–277. doi: 10.1007/s00418-020-01846-0. PubMed DOI PMC
Yamaguchi K., Suzuki K.I., Tanaka K. Examination of Electron Stains as a Substitute for Uranyl Acetate for the Ultrathin Sections of Bacterial Cells. J. Electron Microsc. (Tokyo) 2010;59:113–118. doi: 10.1093/jmicro/dfp045. PubMed DOI
He X., Liu B. Oolong Tea Extract as a Substitute for Uranyl Acetate in Staining of Ultrathin Sections Based on Examples of Animal Tissues for Transmission Electron Microscopy. J. Microsc. 2017;267:27–33. doi: 10.1111/jmi.12544. PubMed DOI
Sato S., Adachi A., Sasaki Y., Ghazizadeh M. Oolong Tea Extract as a Substitute for Uranyl Acetate in Staining of Ultrathin Sections. J. Microsc. 2008;229:17–20. doi: 10.1111/j.1365-2818.2007.01881.x. PubMed DOI
Malac M., Beleggia M., Kawasaki M., Li P., Egerton R.F. Convenient Contrast Enhancement by a Hole-Free Phase Plate. Ultramicroscopy. 2012;118:77–89. doi: 10.1016/j.ultramic.2012.02.004. PubMed DOI
Majorovits E., Barton B., Schultheiß K., Pérez-Willard F., Gerthsen D., Schröder R.R. Optimizing Phase Contrast in Transmission Electron Microscopy with an Electrostatic (Boersch) Phase Plate. Ultramicroscopy. 2007;107:213–226. doi: 10.1016/j.ultramic.2006.07.006. PubMed DOI
Bendayan M., Paransky E. Low Voltage Transmission Electron Microscopy in Cell Biology. Prog. Histochem. Cytochem. 2015;50:1–10. doi: 10.1016/j.proghi.2015.05.001. PubMed DOI
Lednický F., Coufalová E., Hromádková J., Delong A., Kolařík V. Low-Voltage TEM Imaging of Polymer Blends. Polymer (Guildf) 2000;41:4909–4914. doi: 10.1016/S0032-3861(99)00711-9. DOI
Egerton R.F. Choice of Operating Voltage for a Transmission Electron Microscope. Ultramicroscopy. 2014;145:85–93. doi: 10.1016/j.ultramic.2013.10.019. PubMed DOI
Drummy L.F., Yang J., Martin D.C. Low-Voltage Electron Microscopy of Polymer and Organic Molecular Thin Films. Ultramicroscopy. 2004;99:247–256. doi: 10.1016/j.ultramic.2004.01.011. PubMed DOI
Lednický F., Hromádková J., Pientka Z. Ultrathin Sectioning of Polymeric Materials for Low-Voltage Transmission Electron Microscopy. Polymer (Guildf) 2001;42:4329–4338. doi: 10.1016/S0032-3861(00)00790-4. DOI
Bendayan M., Londono I., Paransky E. Compartmentalization of Pancreatic Secretory Zymogen Granules as Revealed by Low-Voltage Transmission Electron Microscopy. J. Histochem. Cytochem. 2011;59:899–907. doi: 10.1369/0022155411418507. PubMed DOI PMC
Nebesářová J., Hozák P., Frank L., Štěpan P., Vancová M. The Cutting of Ultrathin Sections with the Thickness Less than 20 Nm from Biological Specimens Embedded in Resin Blocks. Microsc. Res. Tech. 2016;79:512–517. doi: 10.1002/jemt.22659. PubMed DOI
Möller L., Holland G., Laue M. Diagnostic Electron Microscopy of Viruses With Low-Voltage Electron Microscopes. J. Histochem. Cytochem. 2020;68:389–402. doi: 10.1369/0022155420929438. PubMed DOI
Delong A., Hladil K., Kolařík V. Low Voltage Transmission Electron Microscope. Microsc. Anal. 1994;27:13–15.
Marin K., Stirnberg M., Eisenhut M., Krämer R., Hagemann M. Osmotic Stress in Synechocystis sp. PCC 6803: Low Tolerance towards Nonionic Osmotic Stress Results from Lacking Activation of Glucosylglycerol Accumulation. Microbiology. 2006;152:2023–2030. doi: 10.1099/mic.0.28771-0. PubMed DOI
Červený J., Sinetova M., Zavřel T., Los D. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34. Life. 2015;5:676–699. doi: 10.3390/life5010676. PubMed DOI PMC
Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. Cold-Regulated Genes under Control of the Cold Sensor Hik33 in Synechocystis. Mol. Microbiol. 2001;40:235–244. doi: 10.1046/j.1365-2958.2001.02379.x. PubMed DOI
He Y.-Y., Klisch M., Häder D.-P. Adaptation of Cyanobacteria to UV-B Stress Correlated with Oxidative Stress and Oxidative Damage. Photochem. Photobiol. 2002;76:188–196. doi: 10.1562/0031-8655(2002)076<0188:AOCTUB>2.0.CO;2. PubMed DOI
Mastropetros S.G., Pispas K., Zagklis D., Ali S.S., Kornaros M. Biopolymers Production from Microalgae and Cyanobacteria Cultivated in Wastewater: Recent Advances. Biotechnol. Adv. 2022;60:107999. doi: 10.1016/j.biotechadv.2022.107999. PubMed DOI
Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC
Möllers K.B., Cannella D., Jørgensen H., Frigaard N.-U. Cyanobacterial Biomass as Carbohydrate and Nutrient Feedstock for Bioethanol Production by Yeast Fermentation. Biotechnol. Biofuels. 2014;7:64. doi: 10.1186/1754-6834-7-64. PubMed DOI PMC
Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC
Sudesh K., Taguchi K., Doi Y. Effect of Increased PHA Synthase Activity on Polyhydroxyalkanoates Biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol. 2002;30:97–104. doi: 10.1016/S0141-8130(02)00010-7. PubMed DOI
Khetkorn W., Incharoensakdi A., Lindblad P., Jantaro S. Enhancement of Poly-3-Hydroxybutyrate Production in Synechocystis sp. PCC 6803 by Overexpression of Its Native Biosynthetic Genes. Bioresour. Technol. 2016;214:761–768. doi: 10.1016/j.biortech.2016.05.014. PubMed DOI
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light Scattering on PHA Granules Protects Bacterial Cells against the Harmful Effects of UV Radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The Presence of PHB Granules in Cytoplasm Protects Non-Halophilic Bacterial Cells against the Harmful Impact of Hypertonic Environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Novackova I., Hrabalova V., Slaninova E., Sedlacek P., Samek O., Koller M., Krzyzanek V., Hrubanova K., Mrazova K., Nebesarova J., et al. The Role of Polyhydroxyalkanoates in Adaptation of Cupriavidus Necator to Osmotic Pressure and High Concentration of Copper Ions. Int. J. Biol. Macromol. 2022;206:977–989. doi: 10.1016/j.ijbiomac.2022.03.102. PubMed DOI
Yan P., Guo J., Zhang P., Xiao Y., Li Z., Zhang S., Zhang Y., He S. The Role of Morphological Changes in Algae Adaptation to Nutrient Stress at the Single-Cell Level. Sci. Total Environ. 2021;754:142076. doi: 10.1016/j.scitotenv.2020.142076. PubMed DOI
Carloto I., Johnston P., Pestana C.J., Lawton L.A. Detection of Morphological Changes Caused by Chemical Stress in the Cyanobacterium Planktothrix Agardhii Using Convolutional Neural Networks. Sci. Total Environ. 2021;784:146956. doi: 10.1016/j.scitotenv.2021.146956. PubMed DOI
Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 1979;111:1–61. doi: 10.1099/00221287-111-1-1. DOI
Meixner K., Daffert C., Dalnodar D., Mrázová K., Hrubanová K., Krzyžánek V., Nebesářová J., Samek O., Šedrlová Z., Slaninova E., et al. Glycogen, Poly(3-Hydroxybutyrate) and Pigment Accumulation in Three Synechocystis Strains when Exposed to a Stepwise Increasing Salt Stress. J. Appl. Phycol. 2022;34:1227–1241. doi: 10.1007/s10811-022-02693-3. PubMed DOI PMC
Kouřilová X., Schwarzerová J., Pernicová I., Sedlář K., Mrázová K., Krzyžánek V., Nebesářová J., Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter Xylanophilus and Rubrobacter Spartanus. Microorganisms. 2021;9:909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC
Van de Meene A.M.L., Hohmann-Marriott M.F., Vermaas W.F.J., Roberson R.W. The Three-Dimensional Structure of the Cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 2006;184:259–270. doi: 10.1007/s00203-005-0027-y. PubMed DOI
Sousa A.A., Leapman R.D. Development and Application of STEM for the Biological Sciences. Ultramicroscopy. 2012;123:38–49. doi: 10.1016/j.ultramic.2012.04.005. PubMed DOI PMC
Colliex C., Mory C. Scanning Transmission Electron Microscopy of Biological Structures. Biol. Cell. 1994;80:175–180. doi: 10.1111/j.1768-322X.1994.tb00928.x. PubMed DOI
Bozzola J.J., Russel L.D. Electron Microscopy: Principles and Techniques for Biologists. 2nd ed. Jones and Bartlett; Burlington, MA, USA: 1999.
Wolf S.G., Shimoni E., Elbaum M., Houben L. Cellular Imaging. Springer; Cham, Switzerland: 2018. STEM Tomography in Biology; pp. 33–60.
Egerton R.F. Radiation Damage to Organic and Inorganic Specimens in the TEM. Micron. 2019;119:72–87. doi: 10.1016/j.micron.2019.01.005. PubMed DOI
Hettler S., Dries M., Hermann P., Obermair M., Gerthsen D., Malac M. Carbon Contamination in Scanning Transmission Electron Microscopy and Its Impact on Phase-Plate Applications. Micron. 2017;96:38–47. doi: 10.1016/j.micron.2017.02.002. PubMed DOI
Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM