Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM

. 2025 Jan 04 ; 15 (1) : . [epub] 20250104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39791828

Grantová podpora
21-13541S Czech Science Foundation

Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage.

Zobrazit více v PubMed

Reimer L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer; Berlin/Heidelberg, Germany: 1998. DOI

Erdman N., Bell D.C., Reichelt R. Springer Handbook of Microscopy. Springer International Publishing; Cham, Switzerland: 2019. Scanning Electron Microscopy; pp. 229–318. DOI

Botton G., Prabhudev S. Springer Handbook of Microscopy. Springer International Publishing; Cham, Switzerland: 2019. Analytical Electron Microscopy; pp. 345–453. DOI

Paras, Yadav K., Kumar P., Teja D.R., Chakraborty S., Chakraborty M., Mohapatra S.S., Sahoo A., Chou M.M.C., Liang C.T., et al. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials. 2022;13:160. doi: 10.3390/nano13010160. PubMed DOI PMC

Pauly N., Yubero F., Tougaard S. Determination of the Primary Excitation Spectra in XPS and AES. Nanomaterials. 2023;13:339. doi: 10.3390/nano13020339. PubMed DOI PMC

Magazzù A., Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials. 2023;13:963. doi: 10.3390/nano13060963. PubMed DOI PMC

Ishikawa R., Okunishi E., Sawada H., Kondo Y., Hosokawa F., Abe E. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 2011;10:278–281. doi: 10.1038/nmat2957. PubMed DOI

Zhou L., Song J., Kim J.S., Pei X., Huang C., Boyce M., Mendonça L., Clare D., Siebert A., Allen C.S., et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat. Commun. 2020;11:2773. doi: 10.1038/s41467-020-16391-6. PubMed DOI PMC

Bosch E.G., Lazić I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy. 2015;156:59–72. doi: 10.1016/j.ultramic.2015.02.004. PubMed DOI

Martis J., Susarla S., Rayabharam A., Su C., Paule T., Pelz P., Huff C., Xu X., Li H.K., Jaikissoon M., et al. Imaging the electron charge density in monolayer MoS2 at the Ångstrom scale. Nat. Commun. 2023;14:4363. doi: 10.1038/s41467-023-39304-9. PubMed DOI PMC

Rodenburg J., McCallum B., Nellist P. Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy. 1993;48:304–314. doi: 10.1016/0304-3991(93)90105-7. DOI

Nellist P.D., McCallum B.C., Rodenburg J.M. Resolution beyond the “information limit” in transmission electron microscopy. Nature. 1995;374:630–632. doi: 10.1038/374630a0. DOI

Taylor K.A., Glaeser R.M. Electron Diffraction of Frozen, Hydrated Protein Crystals. Science. 1974;186:1036–1037. doi: 10.1126/science.186.4168.1036. PubMed DOI

Levin B.D.A. Direct detectors and their applications in electron microscopy for materials science. J. Phys. Mater. 2021;4:042005. doi: 10.1088/2515-7639/ac0ff9. DOI

Pennycook T.J., Lupini A.R., Yang H., Murfitt M.F., Jones L., Nellist P.D. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Ultramicroscopy. 2015;151:160–167. doi: 10.1016/j.ultramic.2014.09.013. PubMed DOI

Lei D., Marras A.E., Liu J., Huang C.M., Zhou L., Castro C.E., Su H.J., Ren G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat. Commun. 2018;9:592. doi: 10.1038/s41467-018-03018-0. PubMed DOI PMC

Mrazova K., Bacovsky J., Sedrlova Z., Slaninova E., Obruca S., Fritz I., Krzyzanek V. Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells. Microorganisms. 2023;11:888. doi: 10.3390/microorganisms11040888. PubMed DOI PMC

Oliveira S., Corduneanu O., Oliveira-Brett A. In situ evaluation of heavy metal–DNA interactions using an electrochemical DNA biosensor. Bioelectrochemistry. 2008;72:53–58. doi: 10.1016/j.bioelechem.2007.11.004. PubMed DOI

Ding Z., Gao S., Fang W., Huang C., Zhou L., Pei X., Liu X., Pan X., Fan C., Kirkland A.I., et al. Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures. Nat. Commun. 2022;13:4787. doi: 10.1038/s41467-022-32548-x. PubMed DOI PMC

Kirkland E.J. Advanced Computing in Electron Microscopy. Springer; New York, NY, USA: 2010. DOI

Seki T., Ikuhara Y., Shibata N. Theoretical framework of statistical noise in scanning transmission electron microscopy. Ultramicroscopy. 2018;193:118–125. doi: 10.1016/j.ultramic.2018.06.014. PubMed DOI

Frojdh E., Campbell M., Gaspari M.D., Kulis S., Llopart X., Poikela T., Tlustos L. Timepix3: First measurements and characterization of a hybrid-pixel detector working in event driven mode. J. Instrum. 2015;10:C01039. doi: 10.1088/1748-0221/10/01/C01039. DOI

Madsen J., Susi T. The abTEM code: Transmission electron microscopy from first principles. Open Res. Eur. 2021;1:24. doi: 10.12688/openreseurope.13015.1. PubMed DOI PMC

Lazić I., Bosch E.G., Lazar S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy. 2016;160:265–280. doi: 10.1016/j.ultramic.2015.10.011. PubMed DOI

Yücelen E., Lazić I., Bosch E.G.T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 2018;8:2676. doi: 10.1038/s41598-018-20377-2. PubMed DOI PMC

Wang H., Liu L., Wang J., Li C., Hou J., Zheng K. The Development of iDPC-STEM and Its Application in Electron Beam Sensitive Materials. Molecules. 2022;27:3829. doi: 10.3390/molecules27123829. PubMed DOI PMC

Chapman H.N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultramicroscopy. 1996;66:153–172. doi: 10.1016/S0304-3991(96)00084-8. DOI

Maiden A.M., Humphry M.J., Rodenburg J.M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. 2012;29:1606. doi: 10.1364/JOSAA.29.001606. PubMed DOI

Thibault P., Menzel A. Reconstructing state mixtures from diffraction measurements. Nature. 2013;494:68–71. doi: 10.1038/nature11806. PubMed DOI

Maiden A.M., Rodenburg J.M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy. 2009;109:1256–1262. doi: 10.1016/j.ultramic.2009.05.012. PubMed DOI

Humphry M., Kraus B., Hurst A., Maiden A., Rodenburg J. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 2012;3:730. doi: 10.1038/ncomms1733. PubMed DOI PMC

Rodenburg J., Maiden A. Springer Handbook of Microscopy. Springer International Publishing; Cham, Switzerland: 2019. Ptychography; pp. 833–853. DOI

Batey D.J., Edo T.B., Rau C., Wagner U., Pešić Z.D., Waigh T.A., Rodenburg J.M. Reciprocal-space up-sampling from real-space oversampling in x-ray ptychography. Phys. Rev. A. 2014;89:043812. doi: 10.1103/PhysRevA.89.043812. DOI

de Graaf S., Ahmadi M., Lazić I., Bosch E.G.T., Kooi B.J. Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy. Nanoscale. 2021;13:20683–20691. doi: 10.1039/D1NR06614E. PubMed DOI

Jiang Y., Chen Z., Han Y., Deb P., Gao H., Xie S., Purohit P., Tate M.W., Park J., Gruner S.M., et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature. 2018;559:343–349. doi: 10.1038/s41586-018-0298-5. PubMed DOI

Pennycook T.J., Martinez G.T., Nellist P.D., Meyer J.C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy. 2019;196:131–135. doi: 10.1016/j.ultramic.2018.10.005. PubMed DOI

Hofer C., Pennycook T.J. Reliable phase quantification in focused probe electron ptychography of thin materials. Ultramicroscopy. 2023;254:113829. doi: 10.1016/j.ultramic.2023.113829. PubMed DOI

O’Leary C.M., Martinez G.T., Liberti E., Humphry M.J., Kirkland A.I., Nellist P.D. Contrast transfer and noise considerations in focused-probe electron ptychography. Ultramicroscopy. 2021;221:113189. doi: 10.1016/j.ultramic.2020.113189. PubMed DOI

van Heel M., Schatz M. Fourier shell correlation threshold criteria. J. Struct. Biol. 2005;151:250–262. doi: 10.1016/j.jsb.2005.05.009. PubMed DOI

Rosenthal P.B., Henderson R. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. J. Mol. Biol. 2003;333:721–745. doi: 10.1016/j.jmb.2003.07.013. PubMed DOI

Savitzky B.H., Zeltmann S.E., Hughes L.A., Brown H.G., Zhao S., Pelz P.M., Pekin T.C., Barnard E.S., Donohue J., Rangel DaCosta L., et al. py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis. Microsc. Microanal. 2021;27:712–743. doi: 10.1017/S1431927621000477. PubMed DOI

Song J., Allen C.S., Gao S., Huang C., Sawada H., Pan X., Warner J., Wang P., Kirkland A.I. Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector. Sci. Rep. 2019;9:3919. doi: 10.1038/s41598-019-40413-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...