• This record comes from PubMed

Evaluating stress resilience of cyanobacteria through flow cytometry and fluorescent viability assessment

. 2025 Feb ; 70 (1) : 205-223. [epub] 20241106

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
GA-19-29651L Grantová Agentura České Republiky
I 4082-B25 Austrian Science Fund

Links

PubMed 39503830
PubMed Central PMC11861008
DOI 10.1007/s12223-024-01212-w
PII: 10.1007/s12223-024-01212-w
Knihovny.cz E-resources

Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.

See more in PubMed

Adav SS, Lee DJ (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J Hazard Mater 154:1120–1126. 10.1016/j.jhazmat.2007.11.058 PubMed

Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86. 10.1016/S0167-7012(99)00048-2 PubMed

Brentjens ET, Beall EAK, Zucker RM, Walker D (2023) Analysis of Microcystis aeruginosa physiology by spectral flow cytometry: impact of chemical and light exposure. PLOS Water 2:10. 10.1371/journal.pwat.0000177 PubMed PMC

Burja AM, Banaigs B, Abou-Mansour E, Grant Burgess J, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377. 10.1016/S0040-4020(01)00931-0

Calabrese EJ, Blain RB (2011) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul Toxicol and Pharmacol 61:73–81. 10.1016/j.yrtph.2011.06.003 PubMed

Ciesielski S, Górniak D, Możejko J, Świątecki A, Grzesiak J et al (2014) The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Curr Microbiol 69:594–603. 10.1007/s00284-014-0629-1 PubMed PMC

Cohen Y, Gurevitz M (2006) The cyanobacteria—ecology, physiology and molecular genetics. The Prokaryotes. Chapter 1074–1098. 10.1007/0-387-30744-3_39

Croce AC (2021) Light and autofluorescence, multitasking features in living organisms. Photochem 1:67–125. 10.3390/photochem1020007

Cunningham A (1993) Analysis of microalgae and cyanobacteria by flow cytometry. Flow Cytometry in Microbiology 131–142. 10.1007/978-1-4471-2017-9_10

Cytek® Aurora User’s Guide (2019) Online. CYTEK. Fremont, CA 94538: Cytek Biosciences. https://welcome.cytekbio.com/hubfs/Website%20Downloadable%20Content/Guides%20and%20Manuals/Aurora%20Users%20Guide.pdf. Accessed 25 June 2024

Daly RI, Ho LAB, Justin D (2007) Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ Sci Technol 41:4447–4453. 10.1021/es070318s PubMed

Fan J, Ho L, Hobson P, Brookes J (2013) Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Online Water Res 47:5153–5164. 10.1016/j.watres.2013.05.057 PubMed

Fiorese ML, Freitas F, Pais J, Ramos AM, De Aragão GMF et al (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci 9:454–461. 10.1002/elsc.200900034

Forchhammer K, Schwarz R (2018) Nitrogen chlorosis in unicellular cyanobacteria - a developmental program for surviving nitrogen deprivation. Environ Microb 21:1173–1184. 10.1111/1462-2920.14447 PubMed

Forchhammer K, Selim KA (2019) Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 44:33–53. 10.1093/femsre/fuz025 PubMed PMC

Forchhammer K, Schwarz R, (2019) Nitrogen chlorosis in unicellular cyanobacteria–a developmental program for surviving nitrogen deprivation. Environ Microbiol 21(4):1173-1184. 10.1111/1462-2920.14447 PubMed

Frain KM, Gangl D, Jones A, Zedler JAZ, Robinson C (2016) Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim Biophys Acta (BBA) - Bioenerg 1857:266–273. 10.1016/j.bbabio.2015.08.010 PubMed

Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Online Sci Total Environ 247:119–126. 10.1016/S0048-9697(99)00483-0 PubMed

Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25:375–388 PubMed

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. 10.1007/s10533-004-0370-0

Gillbro T, Cogdell RJ (1989) Carotenoid fluorescence. Chem Phys Lett 158:312–316. 10.1016/0009-2614(89)87342-7

Goh YS, Tan IKP (2012) Polyhydroxyalkanoate production by Antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res 167:211–219. 10.1016/j.micres.2011.08.002 PubMed

Hein S, Steinbüchel A, Hai T (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiol 147:3047–3060. 10.1099/00221287-147-11-3047 PubMed

Holm-Hansen O, Bolis L, Gilles R (2013) Marine phytoplankton and productivity 1984, series title: coastal and estuarine studies. Springer Berlin Heidelberg. ISBN 978-3-540-13333-9. 10.1007/978-3-662-02401-0

Johnson TJ, Hildreth MB, Gu L, Zhou R, Gibbons WR (2015) Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria. J Microbiol Methods 113:57–64. 10.1016/j.mimet.2015.04.003 PubMed

Johnson TJ, Hildreth MB, Gu L, Baldwin EL, Zhou R et al (2016) Evaluating viable cell indicators for filamentous cyanobacteria and their application. J Microbiol, Biotechnol Food Sci 6:886–893. 10.15414/jmbfs.2016/17.6.3.886-893

Juteršek M, Klemenčič M, Dolinar M (2017) Discrimination between Synechocystis members (cyanobacteria) based on heterogeneity of their 16S rRNA and ITS regions. Acta Chim Slov 64:804–817. 10.17344/acsi.2017.3262 PubMed

Kaartokallio H, Søgaard Dh, Norman L, Rysgaard S, Tison JL et al (2013) Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquatic Microb Ecol 71:57–73. 10.3354/ame01667

Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136. 10.1093/dnares/3.3.109 PubMed

Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M (2021) Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 16. 10.1186/s13062-021-00316-4 PubMed PMC

Kojima K, Matsumoto U, Keta S, Nakahigashi K, Ikeda K, Takatani N, Omata T, Aichi M (2022) High-light-induced stress activates lipid deacylation at the sn-2 position in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 63:82–91. 10.1093/pcp/pcab147 PubMed PMC

Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. 10.1016/j.algal.2014.09.002

Korosh TC, Dutcher A, Pfleger BF, Mcmahon KDA, Mattes TE (2018) Inhibition of cyanobacterial growth on a municipal wastewater sidestream is impacted by temperature. Msphere 3:10. 10.1128/mSphere.00538-17 PubMed PMC

Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Obruča S et al (2021) The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 9(5):909. 10.3390/microorganisms9050909 PubMed PMC

Krause M, Radt B, Rösch PA, Popp J (2007) The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. J Raman Spectrosc 38:369–372. 10.1002/jrs.1721

Manoil D, Bouillaguet S (2018) Oxidative stress in bacteria measured by flow cytometry. Online. Advances in Biotechnology and Microbiology 8(1). 10.19080/AIBM.2018.08.555726

Meixner K, Daffert C, Dalnodar D, Mrázová K, Hrubanová K, Krzyzanek V, Nebesarova J, Samek O, Šedrlová Z, Slaninova E, Sedláček P, Obruča S, Fritz I (2022) Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress. J Appl Phycol 34:1227–1241. 10.1007/s10811-022-02693-3 PubMed PMC

Meixner K, Daffert C, Bauer L, Drosg B, Fritz I (2022) PHB producing cyanobacteria found in the neighborhood—their isolation, purification and performance testing. Bioengineering 9:178. 10.3390/bioengineering9040178 PubMed PMC

Mendhulkar VD, Shetye LD (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13:85–93. 10.1089/ind.2016.0021

Mihalcescu I, Van-Melle GM, Chelli B, Pinel C, Ravanat JL (2015) Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates. Phys Biol 12. 10.1088/1478-3975/12/6/066016 PubMed

Mikula P, Zezulka S, Jancula D, Marsalek B (2012) Metabolic activity and membrane integrity changes in Microcystis aeruginosa – new findings on hydrogen peroxide toxicity in cyanobacteria. European J Phycol 47:195–206. 10.1080/09670262.2012.687144

Mills LA, Mccormick AJ, Lea-Smith DJ (2020) Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Bioscience Reports 40. 10.1042/BSR20193325 PubMed PMC

Mironov KS, Sinetova MA, Shumskaya M, Los DA (2019) Universal molecular triggers of stress responses in cyanobacterium Synechocystis. Life 9:67. 10.3390/life9030067 PubMed PMC

Mrazova K, Bacovsky J, Sedrlova Z, Slaninova E, Obruca S et al (2023) Urany-less low voltage transmission electron microscopy: a powerful tool for ultrastructural studying of cyanobacterial cells. Microorganisms 11. 10.3390/microorganisms11040888 PubMed PMC

Mu X, Chen Y (2021) The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem 158:76–82. 10.1016/j.plaphy.2020.11.019 PubMed

Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A et al (2008) Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J 27:1299–1308. 10.1038/emboj.2008.66 PubMed PMC

Nebe-Von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Online J Microbiol Methods 42:97–114. 10.1016/S0167-7012(00)00181-0 PubMed

Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982. 10.1038/nrm1525 PubMed

Nienaber MA, Steinitz-Kannan M (2018) Guide to cyanobacteria: identification and impact. Lexington, USA: University Press of Kentucky; Illustrated edition (June 29, 2018). ISBN 978–0813175591

Novackova I, Hrabalova V, Slaninova E, Sedlacek P, Samek O, Koller M, Krzyzanek V, Hrubanova K, Mrazova K, Nebesarova J, Obruca S (2022) The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. Int J Biol Macromol 206:977–989. 10.1016/j.ijbiomac.2022.03.102 PubMed

Obruca S, Benesova P, Oborna J, Marova I (2014) Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. BiotecH LetT 36:775–781. 10.1007/s10529-013-1407-z PubMed

Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J et al (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 39:68–80. 10.1016/j.nbt.2017.07.008 PubMed

Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C et al (2020) Novel unexpected functions of PHA granules. Applied Microbiol Biot 104:4795–4810. 10.1007/s00253-020-10568-1 PubMed

Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I (2016) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLOS ONE 11. 10.1371/journal.pone.0157778 PubMed PMC

Obruca S, Sedlacek P, Koller M (2021) The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour Technol 326. 10.1016/J.Biortech.2021.124767 PubMed

Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Online Bioresour Technol 97:1296–1301. 10.1016/j.biortech.2005.05.013 PubMed

Patiño S, Alamo L, Cimino M, Casart Y, Bartoli F et al (2008) Autofluorescence of Mycobacteria as a tool for detection of Mycobacterium tuberculosis. J Clin Microbiol 46:3296–3302. 10.1128/JCM.02183-07 PubMed PMC

Pernicova I, Novackova I, Sedlacek P, Kourilova X, Kalina M et al (2020) Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–1. Isolation and Characterization of the Bacterium. Polymers 12:1235. 10.3390/polym12061235 PubMed PMC

Persichetti G, Testa G, Bernini R, Viaggiu E, Congestri R et al (2020) UV autofluorescence spectroscopy for cyanobacteria monitoring and discrimination in source water. Sensors and Microsystems Lecture Notes in Electrical Engineering 247–252. Online ISBN978–3–030–37558–4. 10.1007/978-3-030-37558-4_37

Peschek GA, Hinterstoisser B, Wastyn M, Kuntner O, Pineau B et al (1989) Chlorophyll precursors in the plasma membrane of a cyanobacterium Anacystis nidulans. J Biol Chem 264:11827–11832. 10.1016/S0021-9258(18)80140-5 PubMed

Phinney DA, Cucci TL (1989) Flow cytometry and phytoplankton. Cytometry 10:511–521 PubMed

Pincus Z, Mazer TCA, Slack FJ (2016) Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging 8:889–898. 10.18632/aging.100936 PubMed PMC

Rae BD, Long BM, Badger MRA, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. MicrobIOL Molecular Biol Rev 77:357–379. 10.1128/MMBR.00061-12 PubMed PMC

Rasmussen B, Fletcher IR, Brocks JJA, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104. 10.1038/nature07381 PubMed

Rasmussen RE, Erstad SM, Ramos-Martinez E, Fimognari L, De Porcellinis AJ et al (2016) An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria. Microb Cell Factories 15. 10.1186/s12934-016-0587-3 PubMed PMC

Rast A, Schaffer M, Albert S, Wan W, Pfeffer S et al (2019) Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants 5:436–446. 10.1038/s41477-019-0399-7 PubMed

Regel RH, Brookes JD, Ganf GGA, Griffiths RW (2004) The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia 517:107–120. 10.1023/B:HYDR.0000027341.08433.32

Rosenberg M, Azevedo NFA, Ivask A (2019) Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 9:6483. 10.1038/s41598-019-42906-3 PubMed PMC

Rumyantsev VA, Grigor’eva N, Yu A, Chistyakova LV (2017) Study of changes in the physiological state of cyanobacteria caused by weak ultrasonic treatment. Earth Sci 475:939–941. 10.1134/S1028334X17080190

Santos-Merino M; Singh AK, Ducat DC (2019) New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front Bioeng Biotech 7. 10.3389/fbioe.2019.00033 PubMed PMC

Sen S (2020) Cyanobacterial membrane biology under environmental stresses with particular reference to photosynthesis and photomorphogenesis. Advances in Cyanobact Biol 73–84. 10.1016/B978-0-12-819311-2.00006-1

Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226. 10.1016/j.meteno.2016.07.003 PubMed PMC

Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O et al (2018) Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biot 102:1923–1931. 10.1007/s00253-018-8760-8 PubMed

Spät P, Klozt A, Rexroth S, Maček B, Forchhammer K (2018) Chlorosis as a developmental program in cyanobacteria: the proteomic fundament for survival and awakening. Mol Cel Proteomics 17:1650–1669. 10.1074/mcp.RA118.000699 PubMed PMC

Takahashi T (2019) Routine management of microalgae using autofluorescence from chlorophyll. Molecules 24:4441. 10.3390/molecules24244441 PubMed PMC

Thakur S, Cattoni DI, Nöllmann M (2015) The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent. Eur Biophys J 44:337–348. 10.1007/s00249-015-1027-8 PubMed

Trautner CA, Vermaas WFJ (2013) The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 195:5370–5380. 10.1128/JB.00615-13 PubMed PMC

Truernit E, Haseloff J (2008) A simple way to identify non-viable cells within living plant tissue using confocal microscopy. Plant Methods 4:15. 10.1186/1746-4811-4-15 PubMed PMC

Van De Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270. 10.1007/s00203-005-0027-y PubMed

Votkknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta (BBA) – Mol Cell Res 1541:91–101. 10.1016/S0167-4889(01)00153-7 PubMed

Wu GF, Wu QY, Shen ZY (2001) Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Online Bioresour Technol 76:85–90. 10.1016/S0960-8524(00)00099-7 PubMed

Yentsch CM, Horan, PK (1989) Cytometry in the aquatic sciences. Cytometry: The Journal of the International Society for Analytical Cytology 10(5):497-499. 10.1002/cyto.990100503 PubMed

Zavrel T, Sinetova M, Cerveny J (2015) Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Online. BIO-PROTOCOL 5 10.21769/BioProtoc.1467

Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L et al (2007) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161. 10.1111/j.1462-2920.2007.01440.x PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...